期刊文献+

基于组织进化粒子群优化的测试用例自动生成 被引量:2

Using organizational evolutionary particle swarm techniques to generate test cases for combinatorial testing
下载PDF
导出
摘要 针对组合测试用例生成问题的具体特点,结合组织进化思想及粒子群优化算法,设计了适合问题求解的编码方式及操作算子等,提出了一种基于组织进化粒子群优化的测试用例自动生成算法。该方法用于选择当前局部优化覆盖的测试用例,在此基础上构建满足两两覆盖的测试用例集。仿真实验表明,该方法能有效地降低测试用例数目。 Based on the analysis of the characteristics of combinatorial testing,this paper proposed an organizational evolutionary particle swarm algorithm(OEPST) to generate test cases for combinatorial testing.This algorithm was used to select the test cases of local optimal coverage in current environment based on these test cases,and then built a test suite satisfying the pair-wise coverage criterion.The empirical result shows that this approach can reduce effectively the number of test case.
作者 潘晓英 陈皓
出处 《计算机应用研究》 CSCD 北大核心 2012年第6期2065-2067,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(61050003 61105064) 陕西省自然科学基金资助项目(2011JM8007) 陕西省教育厅科研项目(2010JK837)
关键词 组织进化 粒子群 测试用例 两两覆盖 organizational evolutionary particle swarm test cases pair-wise coverage
  • 相关文献

参考文献14

  • 1KOBAYASHI N, TSUCHIYA T, KIKUNO T. A new method for constructing pair-wise covering designs for software testing[ J]. Information Processing Letters,2002,81 (2) :85-91.
  • 2LIE Yu, TAI K C. Ip-parameter-order: a test generation strategy for pair-wise testing[J]. IEEE Trans on Software Engineering,2002, 28(1) :109-111.
  • 3聂长海,徐宝文,史亮.一种新的二水平多因素系统两两组合覆盖测试数据生成算法[J].计算机学报,2006,29(6):841-848. 被引量:21
  • 4GRINDAL M, OFFUTY J, ANDLER S F. Combination testing strategies: a survey, GMU Technical Report ISE-TR-04-05[ R]. [ S.L] : George Mason University,2004.
  • 5COHEN D M, DALAL S R, FREDMAN M L, et al. The AETG system: an approach to testing based on combinatorial design[ J]. IEEE Trans on Software Engineering, 1997,23 (7) : 437-444.
  • 6TUNG Tu-wen, ALDIWAN W S. Automating test case generation for the new generation mission software system[ C]//Proc of IEEE Aerospace Conference. 2000:434-437.
  • 7COLBOURN C J, COHEN M B, TURBAN R C. A deterministic density algorithm for pairwise interaction coverage [ C ]//Proc of IASTED International Conference on Software Engineering. 2004: 345-352.
  • 8史亮,聂长海,徐宝文.基于解空间树的组合测试数据生成[J].计算机学报,2006,29(6):849-857. 被引量:31
  • 9COHEN M B, COLBOURN C J, LING A C H. Constructing strength three covering arrays with augmented annealing[ J]. Discrete Malhematics ,2007,308( 13 ) :2709-2722.
  • 10COHEN M B, GIBBONS P B, MUGRIDGE W B. Constructing test suites for interaction testing[C]//Proc of the 25th International Conference on Software Engineering. Washington DC: IEEE Computer Society, 2003 : 38-48.

二级参考文献60

  • 1[1]Holland J H. Escaping brittleness: The possibilities of general purpose learning algorithms applied to parallel rule-based systems. In: Michalski R, Carbonnel J, Mitchell T eds. Machine Learning: An AI Approach. Los Altos, CA: Morgan Kaufmann, 1986.593~623
  • 2[2]Wilson S. Classifier systems and the animate problem. Machine Learning, 1987, 2(3): 199~228
  • 3[3]Greene D P, Smith S F. Competition-based induction of decision models from examples. Machine Learning, 1993, 13: 229~257
  • 4[4]De Jong K A, Spears W, Gordon D F. Using genetic algorithms for concept learning. Machine Learning, 1993, 13(2-3): 155~188
  • 5[5]Janikow C Z. A knowledge-intensive genetic algorithm for supervised learning. Machine Learning, 1993, 13(2-3): 189~228
  • 6[6]Liuyu Yang, Widyantoro D H et al. An entropy-based adaptive genetic algorithm for learning classification rules. In: Proceedings of IEEE Congress on Evolutionary Computation, Korea, 2001.790~796
  • 7[7]Juliet Juan Liu, James Tin-Yau Kwok. An extended genetic rule induction algorithm. In: Proceedings of IEEE Congress on Evolutionary Computation, San Diego, USA, 2000.458~463
  • 8[10]Venturini G. SIA: A supervised inductive algorithm with genetic search for learning attributes based concepts. In: Proceedings of the European Conference on Machine Learning, Vienna, Austria, 1993.280~296
  • 9[11]Fidelis M V, Lopes H S, Freitas A A. Discovering comprehensible classification rules with a genetic algorithm. In: Proceedings of IEEE Congress on Evolutionary Computation, San Diego, USA, 2000. 805~810
  • 10[12]Wilcox J R. Organizational learning within a learning classifier system [MS dissertation]. University of Illinois, Illinois, USA, 1995

共引文献68

同被引文献16

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部