期刊文献+

基于高斯混合模型与PCA-HOG的快速运动人体检测 被引量:20

Motion human detection based on mixture of Gaussians and PCA-HOG
下载PDF
导出
摘要 针对传统人体检测系统中由于检测窗口标扫描区域过大,帧的特征维度过高使其在实际应用中内存消耗量大且检测速度慢的情况,提出了改进的运动人体检测方法。该方法利用高斯混合模型进行背景建模剔除掉大部分图像背景,减少了侦测扫描区域,从而在减少负例样本误检率的同时提升了检测速度。同时对处理HOG的高维度,提出了一种基于主成分分析(PCA)降维的梯度方向直方图(HOG)的描述子,即PCA-HOG描述子,它在不降低识别率的前提下,很大程度地提升了侦测窗口的分类速度。实验验证了混合高斯模型与PCA-HOG相结合显著提升了人体检测速度。 Since a traditional human object detection system searched the human object in a huge region with the method of slide window and used a high dimension features to represent the human objects for a better classification taking high memory resources and time consummations,this paper proposed an improved method.An application of Gaussian mixture model(GMM) can coarsely extract the foreground and reduce the region,then the system searching human objects only in the foreground area,which speeded up the detection velocity and reduced the false positives error rate in a practical application.Owing to the high dimension of histogram of oriented gradient(HOG) feature vector,it proposed a novel descriptor which was called PCA-HOG.This descriptor used a classical dimension reduction method called principal component analysis(PCA) to reduce the dimension of raw HOG.The novel descriptor had a lower dimension feature vector than that of HOG,so it gave a much faster speed of the detect window classification.The detect rate of PCA-HOG was almost as high as that of HOG.The experiment shows that the human object detection system combined with the PCA-HOG descriptor and Gaussian mixture model gives a remarkable performance of detection rate.
出处 《计算机应用研究》 CSCD 北大核心 2012年第6期2156-2160,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61004112) 中央高校基本科研业务费科研专项项目(CDJXS11181162)
关键词 运动人体检测 混合高斯模型 主成分分析(PCA) 梯度方向直方图(HOG) PCA-HOG描述子 motion human detection mixture of Gaussians principal component analysis(PCA) histogram of oriented gradient(HOG) PCA-HOG descriptor
  • 相关文献

参考文献20

  • 1DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[ C ]//Pmc of IEEE Computer Society Conference on Com- puter Vision and Pattern Recognition. Washington DC : IEEE Computer Society, 2005:886-893.
  • 2MOHAN A, PAPAGEORGIOU C, POGGIO T. Example-based object detection in images by components [ J]. IEEE Trans on Pattern Analysis and Machine Intelligent,2001,23(4) :349-361.
  • 3MIKOLAJCZYK K, SCHMID C, ZISSERMAN A. Human detection based on a probabilistie assembly of robust part detectors [ C ]//Proc of the 8th European Conference on Computer Vision. 2004: 69-82.
  • 4ZHU Qiang, YEH M C, CHENG K T, et al. Fast human detection using a cascade of histograms of oriented gradients[ C ]//Proe of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC : IEEE Computer Society, 2006 : 1491-1498.
  • 5XU R, ZHANG Bao-chang, YE Qi-xiang, et al. Cascaded ll-norm minimization learning ( CLML ) classifier for human detection [ C ]// Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE Computer Society, 2010:89-96.
  • 6PEDERSOLI M, VEDALDI A, GONZALEZ J. A coarse-to-fine approach for fast deformable object detection[ C ]//Proe of IEEE Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE Cmnputer Society,2011 : 1353-1360.
  • 7RAZAVI N, GALL J, Van COOL L. Scalable multi-class object detection[ C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE Computer Society,2011 :1505-1512.
  • 8BROGGI A, BERTOZZI M, FASCIOLI A, et al. Shape-based pedestrian detection[ C ]//Proc of 1EEE Intelligent Vehicles Symposium. 2000:215-220.
  • 9LIN Zhe, DAVIS L S. Shape-based human detection and segmenta- tion via hierarchical part-template matching [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligent,2010,32(4) :604-618.
  • 10TUZEL O, PORIKLI F, MEER P. Human detection via classification on Riemarmian manifolds [ C ]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. Washington DC : IEEE Computer Society ,2007 : 18-23.

同被引文献189

  • 1吴建.基于颜色和形状特征的彩色图像检索技术研究[J].苏州大学学报(自然科学版),2012,28(1):47-52. 被引量:7
  • 2李刚,邱尚斌,林凌,曾锐利.基于背景差法和帧间差法的运动目标检测方法[J].仪器仪表学报,2006,27(8):961-964. 被引量:111
  • 3贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 4田莹,苑玮琦.人耳识别技术研究综述[J].计算机应用研究,2007,24(4):21-25. 被引量:13
  • 5DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR2005, 2005,1 : 886-893.
  • 6孙昀,刘富强,李志鹏.基于稳定区域梯度直方图的行人检测方法[J].计算机辅助设计图形学报,2012,24(3):372~377.
  • 7姚雪琴,李晓华,周激流.基于边缘对称行和HOG的行人检测方法[J].人工智能及识别技术,2012,38(5):179-182.
  • 8Shu Chang,Ding Xiaoqin, Fang Chi. Histogram of the Oriented Gradient for Face Recognition [ J ]. Tsinghua Science and Technology. 2011 ( 2 ) :216 - 224.
  • 9Zeng Chengbin, Ma Huadong. Robust Head-Shoulder Detection by PCA-Based Multilevel HOG-LBP Detector for People Counting[ C ]//Proceedings of the 2010 20th International Conference on Pattern Recognition,2069 -2072.
  • 10Cheng Li. An Analysis of Hog Production Prediction in Liaoning Province [ C]//Proceedings of the 2011 International Conference on Information Management, Innovation Management and Industrial Engineering, 236 -239.

引证文献20

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部