期刊文献+

一种新颖的混合响应面优化方法 被引量:4

Novel hybrid response surface optimization method
下载PDF
导出
摘要 为减少黑箱优化过程中的评估次数,提出了一种新颖的混合响应面优化方法(HRSO),利用混合响应面建立高精度的近似模型作为代理模型,通过迭代更新响应面不断接近真实模型,从而完成优化。以Dixon-Szego函数类作为测试函数,以评估次数为方法性能优劣的评价指标,实验结果表明,与Gutmann-RBF、CORS-RBF两种方法相比,HRSO能够在较少的评估次数内满足相同的收敛条件,且向全局快速收敛,是一种适合求解黑箱优化问题的方法。 This paper presented a novel method,called hybrid response surface optimization(HRSO) to reduce the number of evaluations in the process of optimization of black-box functions.The proposed method used hybrid response surface to build high accuracy black-box approximate models as surrogate-models.Then it updated the approximate model by circles of iteration.This paper applied the method on the Dixon-Szego test functions and estimated the performance by the number of function evaluations,when a run satisfied the convergence criteria.The results indicate that HRSO meets the same convergence by less evaluation comparing to Gutmann-RBF and CORS-RBF.And it can converge to global optimum quickly.It is a suitable method for solving expensive black-box problem.
出处 《计算机应用研究》 CSCD 北大核心 2012年第6期2180-2183,共4页 Application Research of Computers
关键词 黑箱函数 混合响应面 全局优化 对称拉丁超立方设计 black-box function hybrid response surface global optimization symmetric Latin hypercube design
  • 相关文献

参考文献11

  • 1GUTMANN H M. Radial basis function methods for global optimization [ D ]. Cambridge : University of Cambridge ,2001.
  • 2GUTMANN H M. A radial basis function method for global optimization[ J ]. Journal of Global Optimization ,2001,19 ( 3 ) :201-227.
  • 3REGIS R G, SHOEMAKER C A. Constrained global optimization of expensive black box functions using radial basis functions [ J]. Journal of Global Optimization ,2005,31 ( 1 ) : 153-171.
  • 4王永菲,王成国.响应面法的理论与应用[J].中央民族大学学报(自然科学版),2005,14(3):236-240. 被引量:607
  • 5BAS D, BOYACI T H. Modeling and optimization 11 :comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction[J]. Journal of Food Engineering,2007,78 (3) : 846-854.
  • 6McDONALD D B,GRANTHAM W J,TABOR W L,et al. Global and local optimization using radial basis function response surface model [J]. Applied Mathematical Modeling,2007,31 (10):2095-2110.
  • 7ALEXANDROV N, DENNIS J E, LEWIS R M, et al. A trust region framework for managing the use of approximation models in optimization [ J ]. Structural Optimization, 1998,15 ( 1 ) : 16- 23.
  • 8JONES D R. A taxonomy of global optimization methods based on response surfaces [ J ]. Journal of Global Optimization, 2001,21 (14) :345-383.
  • 9YE K Q, LI W, SUDJIANTO A. Algorithmic construction of optimal symmetric latin hypercube designs [ J ]. Journal of Statistical Planning and Inference ,2000,90( 1 ) : 145-159.
  • 10KAO Y T,ZAHARA E. A hybrid genetic algorithm and particle swarm optimization for multimodal functions [ J ]. Applied Soft Computing, 2008,8(2) :849-857.

二级参考文献16

  • 1廖亚曦,王成国,刘金朝.应用响应面方法进行200km/h转向架阻尼器参数的优化研究[J].铁道机车车辆,2004,24(5):8-11. 被引量:1
  • 2[2]RAYMOND H MYERS. Response Surface Methodology-Current Status and Future Directions [ J ]. Journal of Quality Technology, 1999,31 ( 1 ).
  • 3[3]张润楚,郑海涛,兰燕.试验设计与分析及参数优化[M].北京:中国统计出版社.2003.
  • 4[4]HILL W J, HUNTER W G. A Review of Response Surface Methodology: A Literature Review[ J]. Technometrics, 1966,8:571- 590.
  • 5[5]R Mead, D J Pike. A Review of Response Surface Methodology from A Biometrics Viewpoint[ J]. Biometrics, 1975,31 (12) :803- 851.
  • 6[6]RAYMOND H MYERS, ANDRE I KHUTI, WALTERH CARTER. Response Surface Methodology: 1966 - 1988[J].Technometrics, 1989,31 (2).
  • 7[7]CARTER W H, WAMPLER G L, STABLEIN D M. Review of the Application of Response Surface Methodology in the Combination Therapy of Cancer[J]. Cancer Treatment Reports, 1983,70:133- 140.
  • 8[8]HENIKA R G, PALMER G M.Response-Surface Methodology-Revisited[J]. Cereal Food Science, 1976,21:432- 445.
  • 9[9]HENIKA R G. Use ofResponse Surface Methodology in Sensory Evaluation[J]. Food Technology, 1982,36:96- 101.
  • 10[11]BUCHER C G, BOURGUND U. A fast and Efficient Response Surface Approach for Structural Reliability Problems[J].Structural Safety,1990,7(1):57-66.

共引文献606

同被引文献30

  • 1雷开友,邱玉辉,贺一.一种优化高维复杂函数的PSO算法[J].计算机科学,2006,33(8):202-205. 被引量:18
  • 2窦毅芳,刘飞,张为华.响应面建模方法的比较分析[J].工程设计学报,2007,14(5):359-363. 被引量:73
  • 3任伟新,彭雪林.青洲斜拉桥的基准动力有限元模型[J].计算力学学报,2007,24(5):609-614. 被引量:18
  • 4Jones D R, Schonlau M mld Welch W.J. tflicient globa|optimiza.liorl of expensive black-box fkmctions..]. Glo)M Optim., 1998, 13(4): 455-492.
  • 5Gutmann t{ M. A radial basis funct, ion method fbr glol)M opt, imizat, ion, .J. GlobM Optim., 2001, 19(3): 201-227.
  • 6Regis R G and Shoemaker C A. Constrained global optimization of expensive Mack box fimc- t, ions using radial basis functions. J. (llobal Optim., 2005, :-31 (1): 15 ;-1 71.
  • 7Noceda.1 J a.nd Wright S ,l. Numerica.l opt, imiza.t.ion. New York: Springer-Verlag, 1999.
  • 8Torn A and Zilinskas A. Global optimization. Lecture notes in computer sicence. Berlin: Springer-Verlag, 1989.
  • 9Kroese D P, Porotsky S and Rubinstin R Y. The cross-entropy method for continuous multi- extremal optimization. Methodol. Comput. Appl. Probab., 2006, 8(3): 383-407.
  • 10BjSrkman J and Homstr6m K. Global optimization of costly nonconvex functions using radial basis functions. Optim. Eng., 2000, 1(4): 373-397.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部