期刊文献+

基于字典优化的稀疏表示的视频镜头分类 被引量:1

Video shot classification based on sparse representation of dictionary optimized
下载PDF
导出
摘要 为了克服稀疏表示中冗余字典分类效果不佳的问题,提出了基于字典优化的稀疏表示算法。该算法制定了新的基于稀疏表示的分类判别规则,采用了基于冗余字典内基元类内平均欧式距离最小以及类间平均欧式距离最大的字典优化方法,形成优化字典进行特征稀疏表示。将该算法应用于视频镜头的稀疏表示特征提取与分类,实验结果表明该方法优化后的字典进行视频镜头的特征提取和分类,其识别率得到了明显的提高。 In order to overcome the ineffective classification results of the redundant dictionary in the sparse representation-based classifier,this paper presented a sparse representation algorithm based on dictionary optimization.The algorithm developed a new classification discriminate rules based on sparse representation.It optimized the dictionary by the method of minimizing the average of the in-class Euclidean distance and maximized the average of the between-class Euclidean distance,formed the optimized dictionary and presented the features based on sparse representation.And the algorithm was applied on video shot to extract feature and classify based on sparse representation.The experimental results show that the recognition rate of feature extraction and classification on video shot based on the dictionary optimized by this method has been significantly improved.
出处 《计算机应用研究》 CSCD 北大核心 2012年第6期2375-2378,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61170126) 江苏省自然科学基金资助项目(BK2009199) 江苏省省属高校自然科学研究资助项目(11KJD520004) 江苏省普通高校研究生科研创新计划资助项目(CXZZ11_0216)
关键词 稀疏表示 字典优化 视频镜头分类 sparse representation dictionary optimization video shot classification
  • 相关文献

参考文献8

  • 1OLSHAUSEN B A, FIELD D J. Sparse coding with an over-complete basis set:a strategy employed by vl [ J].Vision Research, 1997,37 ( 23 ) :33 l 1-3325.
  • 2PATI Y C, REZAHFAR R, KR1SHNAPRASAD P S. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[ C ]//Proc of the 27th Asitomar Conference on Signals, Systems & Computers. los Alamilus, CA: IEEE, 1993 : 40-44.
  • 3WRIGHT J, YANG A, GANESH A, et al. Robust lace recognition via sparse representation[ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence,2009,31 (2) :210-227.
  • 4AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: all algorithm for designing uver-complete dictionaries for sparse representation [ J ]. IEEE Trans on Signal Processing ,2006,11 ( 54 ) :4311-4322.
  • 5DONOHO D. For most large underdelermined systems of linear equations the minimal Ll-norm solution is also the sparsest solution [ J ]. Communications on Pure and Applied Mathematics, 2006,59 (6) :797-829.
  • 6LEE K C, HO J, KRIEQMAN D. Acquiring Linear Subspaces for Face Recognition under Variable Lighting[ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence ,2005,27 ( 5 ) :684-698.
  • 7HE Xiau-fei, YAN S, HU Y, et al. Face recognition using laplacianfaces[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2005,27( 3 ) :328-340.
  • 8BELHUMEUR P N, HESPANHA J P, KRIENGMAN D J. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997,19(2) :711-720.

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部