期刊文献+

仿生水黾机器人的漂浮特征 被引量:5

Floating characteristics of bio-mimetic water strider robot
原文传递
导出
摘要 水黾是一种栖息于静水面或溪流缓流水面上的常见昆虫。它主要利用水的表面张力实现在水面上的漂浮。由于其独特的漂浮机制和高效的划水方式,近年来,引起了越来越多的学者的研究兴趣。此文在Yun Seong Song等建立的支撑腿数学模型的基础上,进一步研究超疏水材料在仿生水黾机器人研制中的应用价值,即超疏水材料制成的支撑腿可以增加机器人在水上漂浮的安全性及减小运动阻力。为了进一步提高仿生水黾机器人的承载能力,增加支撑腿与水面的接触长度是关键。本文提出采用多根腿并排的方法进一步提高腿部的支撑能力。通过对平行腿不同间距时提供的最大支撑力研究,确定了一定区域内设置不同平行腿间隔时,支撑腿获得的最大支撑力的计算方法。计算结果与实验数据符合得较好。 The water strider is a kind of common insect which inhabits on water surface of the static water or often flows. Its floating force is mainly provided by the surface tension of water. Because of its unique floating way and the efficient walking way on the water, the water strider intrigues a growing number of scholars' interest recently. The measurements showed that contact angle of water strider legs reach as high as 167~. In this paper, based on the work ofYun Seong Song about supporting leg modeling, the application value of super-hydrophobic materials on bio-mimetic water strider robot was further studied, which can increase the security of water strider robot walking on the water and decrease the drag force. The key problem of improving thecarrying capacity of bio-mimetic water strider robot is to increase the contact length of support legs with water. A way to improve the carrying capacity by using several parallel legs was also presented. Through the study on the maximum support force, the formula of the maximum support force was derived. Experimental data and theoretical calculation are well matched.
出处 《水动力学研究与进展(A辑)》 CSCD 北大核心 2012年第2期162-167,共6页 Chinese Journal of Hydrodynamics
基金 国家自然科学基金项目(10972199) 浙江省大学生科技创新计划项目(2010R404023)的支持~~
关键词 仿生水黾机器人 超疏水 Young—Laplace方程 bio-mimetic water strider robot super-hydrophobic Young-Laplace equation
  • 相关文献

参考文献12

  • 1JIANG L, GAO X F. Water-repellent legs of water stri- ders[J]. Nature, 2004, 432(7013): 36.
  • 2FENG X Q, GAO X F, WU Z N, et al. Superior water repellency of water strider legs with hierarchical stru- ctures: Experiments and analysis[J]. Langmuir, 2007, 23(9): 4892-4896.
  • 3HU D L, CHAN B, BUSH J W M. The hydrodynamics of water strider locomotion[J]. Nature, 2003, 424(6949): 663-666.
  • 4SONG Y S, SUHR S H, SITTI M. Modeling of the supporting legs for designing biomimetic water strider robots[C]. IEEE International Conference on Robotics and Automation, Piscataway, USA, 2006. 2303-2310.
  • 5SONG Y S, SITTI M. Surface-tension-driven biological- ly inspired water strider robots: Theory and experi- ments[J]. IEEE Transactions on Robotics, 2007, 23(3): 578-589.
  • 6SUZUKI K, TAKANOBU H, NOYA K, et al. Water strider robots with micro-fabricated hydrophobic legs[C]. Proceedings of the 2007 IEEE/RSJ Interna- tional Conference on Intelligent Robots and Systems, San Diego, USA, 2007. 590-595.
  • 7吴立成,孙富春,袁海斌.水上行走机器人[J].机器人,2010,32(3):443-448. 被引量:5
  • 8连志鹏,吴立成,袁海斌.一种水上行走机器人的设计与实现[J].机器人,2010,32(4):449-453. 被引量:6
  • 9王淑慧,吴立成.水上行走机器人腿部静力学分析[J].北京航空航天大学学报,2010,36(10):1176-1179. 被引量:6
  • 10KELLER J B. Surface tension force on a partly submer- ged body[J]. Physics of Fluids, 1998, 11(10): 3009- 3010.

二级参考文献62

  • 1刘品宽,孙立宁,刘涛,吴善强.惯性冲击式运动原理的理论分析与仿真[J].中国机械工程,2004,15(24):2217-2221. 被引量:13
  • 2王庆军,陈庆民.超疏水膜表面构造及构造控制研究进展[J].高分子通报,2005(2):63-69. 被引量:18
  • 3禹营,汪家道,陈大融.疏水表面的摩擦阻力特性研究[J].润滑与密封,2006,31(9):15-16. 被引量:13
  • 4Bhushan B. Tribology on the macroseale to nanoscale of micro- electromechanical system materials : a reviw [ J ]. Proc Instn Mech Engrs, Part J, Journal of Engineering Tribology, 2001, 215 : 1 - 18.
  • 5Navier C L M H. M6moire sur les lois du mouvement des fluides[J]. Memoires de 1' Acad mie Royale des Sciences de 1' Institut de France,1823 ,VI:389 -440.
  • 6Watanabe K, Yanuar, Udagawa H. Drag reduction of Newtonian fluid in a circular pipe with highly water-repellent wall [ J ]. J Fluid Mech, 1999,381:256 - 262.
  • 7Watanabe K,Takayama T, Ogata S,et al. Flow between two coaxial rotating cylinders with a highly water-repellent wall [ J ]. AIChE J ,2003,49 : 1956 - 1963.
  • 8Ou J, Rothstein J P. Direct velocity measurements of the flow past drag-reducting ultrahydrophobic surfaces [ J ]. Physics of Fluids ,2005,17 ( 10 ) : 1 - 10.
  • 9Oner D, McCarthy T J. Ultrahydrophobic surfaces, effects of to-pographylength sales on wettability [ J ]. Langmuir, 2000, 16 (20) :7777 - 7782.
  • 10Choi C ,Westin J A, Breuer K S. Apparent slip flows in hydrophilic and hydrophobic microchannels[ J ]. Phys Fluids ,2003, 15 ( 10 ) :2897 - 2902.

共引文献29

同被引文献45

  • 1徐胜,李家云.我国海上救援直升机现状和分析[J].直升机技术,2010(1):68-71. 被引量:22
  • 2杜家纬.生命科学与仿生学[J].生命科学,2004,16(5):317-323. 被引量:15
  • 3王成,王效岳.虚拟样机技术及ADAMS[J].机械工程与自动化,2004(6):66-68. 被引量:35
  • 4江雷.从自然到仿生的超疏水纳米界面材料[J].科技导报,2005,23(2):4-8. 被引量:108
  • 5高雪峰,江雷.天然超疏水生物表面研究的新进展[J].物理,2006,35(7):559-564. 被引量:72
  • 6Xi- Qiao, Feng, Xuefeng, Gao, Ziniu, Wu, et al. Superior water repellency of water strider legs with hi- erarchical structures : Experiments and analysis [ J ]. Langmuir, 2007, 23(9) :4892 -6.
  • 7Watson G S, Cribb B W, Watson J A. Experimental Determination Of The Efficiency Of Nanostructuring On Non- Wetting Legs Of The Water Strider [ J ]. Acta Biomaterialia, 2010, 6(10) :4060 - 4.
  • 8Pan Q, Min W. Miniature Boats with Striking Loading Capacity Fabricated from Superhydrophobic Copper Meshes [ J ]. Acs Applied Materials & Interfaces, 2009, 1 (2) :420 -423.
  • 9Ghasseminia A S, Faraji A. Storm Resistant Boat De- signing Based on the Geometry and Movement of Water Strider[J]. Journal of Bionic Engineering, 2008, 5 (08) :87 -90.
  • 10Hu D L, Chan B, Bush J W. The hydrodynamics of water strider locomotion [ J ]. Nature, 2003, 424 (6949) :663 -666 (7 August 2003) I doi :10. 1038/ nature01793.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部