期刊文献+

带跳分数布朗运动下最优金融决策

An optimal financial approach under the fractional Brownian model with poisson jump
下载PDF
导出
摘要 为了考虑一类带有人寿保险的最优投资消费策略问题,假定风险资产价格过程服从带泊松跳的分数布朗运动,在最大化投资者生命周期内的投资、消费和投保的期望效用的准则下,使用动态规划原理建立了最优投资消费选择模型.最后在CRRA效用下通过求解HJB方程得到了最优金融决策的解析式解. Under the hypothesis that asset price follow a fractional Brownian motion with poisson jump,a class of optimal portfolio and consumption problem that combines life insurance is studied.Based on the criterion of maximizing the investor′s expected utility in the life cycle of investment,consumption and insurance,the optimal investment and consumption choice model was established using dynamic programming principle.The optimal analytic solutions of the optimal financial approach were obtained by solving the HJB equation under the CRRA utility function.
作者 孙宗岐 刘煜
出处 《西安工程大学学报》 CAS 2012年第2期254-257,共4页 Journal of Xi’an Polytechnic University
关键词 最优投资消费策略 带跳分数布朗运动 HJB方程 optimal portfolio and consumptim approach fractional Brownian model with poisson jump HJB equation
  • 相关文献

参考文献21

  • 1MERTON R C. Optimal consumption and portfolio rules in a continuous time model[J]. Journal of Economic Theory, 1971,3 (4) : 373-413.
  • 2MUTHURAMAN K. A computational scheme for optimal investment-consumption with proportional transaction costs [J]. Journal of Economic Dynamics and Control,2007,31(4): 1 132-1 159.
  • 3杨瑞成,刘坤会.随机跳跃幅度的最优消费与证券选择策略问题[J].管理科学学报,2005,8(6):83-87. 被引量:7
  • 4丁传明,邹捷中.考虑人寿保险的最优金融决策[J].系统工程,2003,21(5):84-87. 被引量:5
  • 5LO A W, MACKINLAY A C. Stock market prices do not follow random walks: Evidence from a simple specification test[J]. Review of Financial Studies, 1988 (1) : 41- 66. 10.
  • 6A W. Long-term memory in stock market prices[J]. Econometrical,1991,59(5) :1 279-1 313.
  • 7黄德龙 杨晓光.中国证券市场股指收益分布的实证分析.管理科学学报,2007,10(3):37-43.
  • 8MANDELBROT B B. The fractal geometry of natures[M]. San Francisco..W H Freemanang Company, 1982.
  • 9PETERS E. Fractal structure in the capital markets[J]. Financial Analyst Journal, 1989(7) :434-453.
  • 10HU Y,OKSENDAL B,SULEM A. Optimal consumption and portfolio in a Black-Scholes market driven by fractional Brownian motion[J]. Infinite Dim Anal Quantum Probab Related Topics,2003,6(4): 519-536.

二级参考文献101

共引文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部