摘要
This article presents the newly designed oblique towing test in the horizontal plane for the scaled model of 4 500 m deep sea open-framed Remotely Operated Vehicle (ROV),which is being researched and developed by Shanghai Jiao Tong University.Accurate hydrodynamics coefficients measurement is significant for the maneuverability and control system design.The scaled model of ROV was constructed by 1:1.6.Hydrodynamics tests of large drift angle were conducted through Large Amplitude Horizontal Planar Motion Mechanism (LAHPMM) under low speed.Multiple regression method is adopted to process the test data and obtain the related hydrodynamic coefficients.Simulations were designed for the horizontal plane motion of large drift angle to verify the coefficients calculated.And the results show that the data can satisfy with the design requirements of the ROV developed.
This article presents the newly designed oblique towing test in the horizontal plane for the scaled model of 4 500 m deep sea open-framed Remotely Operated Vehicle (ROV),which is being researched and developed by Shanghai Jiao Tong University.Accurate hydrodynamics coefficients measurement is significant for the maneuverability and control system design.The scaled model of ROV was constructed by 1:1.6.Hydrodynamics tests of large drift angle were conducted through Large Amplitude Horizontal Planar Motion Mechanism (LAHPMM) under low speed.Multiple regression method is adopted to process the test data and obtain the related hydrodynamic coefficients.Simulations were designed for the horizontal plane motion of large drift angle to verify the coefficients calculated.And the results show that the data can satisfy with the design requirements of the ROV developed.
基金
Project supported by the National High Technology Research and Development Progm of China (863 Program,Grant No.2008AA092301)