期刊文献+

NMR实验参数对IBP-血浆相互作用个性化差异研究的影响 被引量:1

Effects of NMR Parameters on Study of Individual Variations of Plasma-Ibuprofen Interactions
下载PDF
导出
摘要 药物与血浆蛋白相互作用强弱是影响药物分布代谢与药效的关键因素之一.本研究小组已报道用扩散加权谱、弛豫加权谱结合主成分分析(PCA)方法研究布洛芬(IBP)与血浆蛋白相互作用的个体差异性.该文则研究核磁共振实验参数的设置对血浆与药物相互作用个体差异性研究的影响.以对照血浆样品组与加入布洛芬血浆组为模型,改变扩散时间、梯度强度、回波时间这3种实验参数,采集了27套不同实验设置的扩散加权谱与10套不同回波时间的弛豫加权谱.结果表明,扩散时间为0.1s~0.14s且梯度强度为1.52×10-3 T/cm~1.90×10-3 T/cm时采集的扩散加权谱或回波时间为70ms~110ms时采集的弛豫加权谱更适合用来研究血浆与布洛芬相互作用的个性化差异. The interactions between drug and plasma proteins play a major role in drug absorption, metabolism and its efficacy. Previous reports demonstrated that diffusion- and relaxation-weighted NMR combined with principal components analysis (PCA) could be used to characterize individual variations of plasma drug interactions. In this research, using plasma with/without drug ibuprofen (IBP)as model, the NMR parameters including diffusion time, gradient strength for diffusion weighted NMR and echo time for relaxation-weighted NMR were optimized. The results showed that gradient strength of 1.52×10 ^-3T/cm- 1. 90×10^-3T/cm under diffusion time of 0.1 s-0.14 s for diffusion-weighted NMR and echo time of 70 ms- 110 ms for relaxation-weighted NMR are optimal for characterizing individual variations of plasma-drug interactions.
出处 《波谱学杂志》 CAS CSCD 北大核心 2012年第2期216-223,共8页 Chinese Journal of Magnetic Resonance
基金 国家自然科学基金资助项目(20975112)
关键词 核磁共振(NMR) 个性化差异 扩散加权谱 弛豫加权谱 主成分分析 血浆 布洛芬中 nuclear magnetic resonance(NMR), individual variation, diffusion weighted NMR, relaxation-weighted NMR, principal components analysis, plasma, ibuprofen
  • 相关文献

参考文献13

  • 1Kragh Hansen U, Chuang V T, Otagiri M, et al. Practical aspects of the ligand binding and enzymatic proper- ties of human serum albumin[J]. Biol Pharm Bull, 2002, 25(6) : 695 -704.
  • 2Berezhkovskiy L M. Some features of the kinetics and equilibrium of drug binding to plasma protein[J]. Expert Opin Drug Metab Toxicol, 2008, 4(12): 1 479-1 498.
  • 3Wasan K M, Brocks D R, Lee S D, et al. Impact of lipoproteins on the biological activity and disposition of hy- drophobic drugs: implications for drug discovery[J]. Nat Rev Drug Discov, 2008, 7(1): 84-99.
  • 4Wanwimolruk S, Denton J R. Plasma protein binding of quinine: binding to human serum albumin, 1-acid glyco- protein and plasma from patients with malaria[J], d Pharm Pharmacol, 1992, 44(10): 806-811.
  • 5Grace A A, Camm AJ. Quinidine[J]. N EnglJ Med, 1998, 338(1): 35-45.
  • 6AI Rayyes O, Ahren B, Floren C H. Enhancement of low density lipoprotein catabolism by non-steroidal anti in flammatory drugs in cultured HepG2 cells[J]. Eur J Pharmacol, 1999, 372(3) : 311-318.
  • 7Zapolska-Downar D, Zapolska-Downar A, Bukowska H, et al. Ibuprofen protects low density lipoproteins a gainst oxidative modification[J]. Life Sci, 1999, 65(22): 2 289-2 303.
  • 8Zapolska-Downar D, Naruszewicz M, Zapolski Downar A, et al. Ibuprofen inhibits adhesiveness of monocytes to endothelium and reduces cellular oxidative stress in smokers and non-smokers[J]. Eur J Clin Invest, 2000, 30 (11): 1 002-1 010.
  • 9Zapolska-Downar D, Naruszewicz, M. A pleiotropic antiatherogenic action of ibuprofen[J]. Med Sci Monit, 2001, 7(4): 837-841.
  • 10Cui Y F, Bai G Y, Li C G, et al. Analysis of competitive binding of ligands to human serum albumin using NMR relaxationmeasurements[J]. J PharmBiomedAnal, 2004, 34(2): 247-254.

同被引文献19

  • 1Williams K, Lee E. Importance of drug enantiomers in clinical pharmacology[J]. Drugs, 1985, 30(4): 333-354.
  • 2Islam M R, Mahdi Dr J G, Bowen I D. Pharmacological importance of stereochemical resolution of enatiomeric drugs[J]. Drug Safety, 1997, 17(3): 149-165.
  • 3YouQi-dong(尤启冬),LinGuo-qiang(林国强).ChiralDrug.ResearchandApplication(手性药物:研究与应用)[M].Beijing(北京):ChemicalIndustryPress(化学工业出版社),2004.
  • 4Kaiser D G, Vangiessen G J, Reische R J, et al. Isomeric inversion of ibuprofen (R)-enantiomer in humans[J]. J Pharm Sei, 1976, 65(2): 269-273.
  • 5Adams S S, Bresloff P, Masson C G. Pharmacological differences between the optical isomers of ibuprofen: evidence for Metabolic inversion of the (-)-isomer[J]. J Pharm Pharmacol, 1976, 28(3): 256-257.
  • 6BIazewska K, Gajda T. (S)-Naproxen and (S)-Ibuprofen chlorides-convenient chemical derivatizing agents for the determination of the enantiomeric excess of hydroxy and aminophosphonates by ^31p NMR[J], Tetrahedron: Asymmetry, 2002, 13:671-674.
  • 7Wenzel T J, Chisholm C D. Using NMR Spectroscopic Methods to Determined Enatiomeric Purity and Asign Absolute Stereochemstry [J]. Prog Nucl Magn Reson Spectros, 2011, 59:1 -63.
  • 8Lei X X, Liu L, Chen X J, et al. Pattern-Based Recognition for Determination of Enantiomeric Excess, Using Chiral Auxiliary Induced Chemical Shift Perturbation NMR[J]. Org Lett, 2010, 12(11): 2 540-2 543.
  • 9Liu L, Ye M D, Hu X G, et al. Chiral solvating agents for carboxylic acids based on salan moiety[J]. Tetrahedron: Asymmetry. 2011, 22:1 667-1 671.
  • 10Ma Q Z, Ma M S, Tian H Y, et al. A novel amine receptor based on the binol scaffold functions as a highly effective chiral shift reagent for carboxvlic acids[J]. Org Lett. 2012. 14(23): 5 813-5 815.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部