期刊文献+

最大度为6的平面图是13-线性可染的 被引量:1

Plane graphs with maximum degree 6 are 13-linear-colorable
下载PDF
导出
摘要 图G的线性色数lc(G)是指G的所有线性染色中所用的最少颜色的个数.运用Discharging方法,研究了平面图的线性色数问题,证明了最大度为6的平面图是13-线性可染的. The linear chromatic number lc ( G ) of the graph G was defined as the smallest number of colors in a linear coloring of G. It was studied the linear chromatic number of planar graphs, using the method of dis- charging, planar graphs with maximum degree 6 were showed to be 13-1inear-colorable.
作者 王侃
出处 《浙江师范大学学报(自然科学版)》 CAS 2012年第2期121-124,共4页 Journal of Zhejiang Normal University:Natural Sciences
基金 国家自然科学基金资助项目(11071223) 浙江省自然科学基金重点项目(Z6090150) 浙江省教育厅科研项目(Y201121311)
关键词 平面图 线性染色 线性色数 最大度 planar graphs linear coloring linear chromatic number maximum degree
  • 相关文献

参考文献9

  • 1Yuster R. Linear coloring of graphs [ J ]. Discrete Math, 1998,185 ( 1/2/3 ) :293 -297.
  • 2Grtinhaum B. Aeyclie colorings of planar graphs [ J ]. Israel J Math, 1973,14 (4) : 390~08.
  • 3Borodin O V. On acyclic colorings of planar graphs [ J]. Discrete Math, 1979,25 (3) :211-236.
  • 4Kostochka A V. Acyclic 6-coloring of planar graphs[ J ]. Metody Diskret Anal, 1976,28:40-56.
  • 5Wang Weifan, Shu Qiaojun, Wang Kan, et al. Acyclic chromatic indices of planar graphs with large girth [ J ]. Discrete Appl Math,201 I, 159 (12) : 1239-1253.
  • 6Esperet L, Montassier M, Raspaud A. Linear choosability of graphs[ J 1. Discrete Math ,2008,308 ( 17 ) :3938-3950.
  • 7Raspaud A, Wang Weifan. Linear coloring of planar graphs with large girth [ J ]. Discrete Math,2009,309 ( 18 ) :5678-5686.
  • 8王侃.不含3-圈平面图的线性染色[J].浙江师范大学学报(自然科学版),2011,34(2):135-140. 被引量:3
  • 9Li Chao, Wang Weifan, Raspaud A. Upper bounds on the linear chromatic number of graph [ J ]. Discrete Math ,2011,311 ( 4 ) :232-238.

二级参考文献8

  • 1Esperet L,Montassier M,Raspaud A.Linear choosability of graphs[J].Discrete Math,2008,308 (17):3938-3950.
  • 2Raspaud A,Wang W.Linear coloring of planar graphs with large girth[J].Discrete Math,2009,309 (18):5678-5686.
  • 3Li Chao,Wang Weifan,Raspaud A.Upper bounds on the linear chromatic number of a graph[J].Discrete Math,2011,311 (4):232-238.
  • 4Yuster R.Linear coloring of graphs[J].Discrete Math,1998,185 (1/2/3):293-297.
  • 5Grünbaum B.Acyclic colorings of planar graphs[J].Israel J Math,1973,14(4):390-408.
  • 6Borodin O V.On acyclic colorings of planar graphs[J].Discrete Math,1979,25 (3):211-236.
  • 7Kostochka A V.Acyclic 6-coloring of planar graphs[J].Metody Diskret Anal,1976,28:40-56.
  • 8M itchem J.Every planar graph has an acyclic 8-coloring[J].Duke Math J,1974,41 (1):177-181.

共引文献2

同被引文献6

  • 1Jakovac M,Klav(z)ar S. Vertex-,edge-,and total-colorings of Sierpinski-like graphs[J].{H}DISCRETE MATHEMATICS,2009,(06):1548-1556.
  • 2Chen Meirun,Guo Xiaofeng. Adjacent vertex-distinguishing edge and total chromatic numbers of hypercubes[J].{H}Information Processing Letters,2009,(12):599-602.doi:10.1016/j.ipl.2009.02.006.
  • 3Liu Bin,Hou Jianfeng,Wu Jianliang. Total colorings and list total colorings of planar graphs without intersecting 4-cycles[J].{H}DISCRETE MATHEMATICS,2009,(20):6035-6043.
  • 4Razavi S,Sarbazi-Azad H. The triangular pyramid:routing and topological properties[J].{H}Information Sciences,2010,(11):2328-2339.
  • 5傅彩霞.若干倍图的均匀染色[J].浙江师范大学学报(自然科学版),2012,35(2):133-137. 被引量:2
  • 6薛玲,吴建良.较少短圈的平面图的全色数[J].山东大学学报(理学版),2012,47(9):84-87. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部