期刊文献+

拟Lorenz方程在周期扰动下的奇怪吸引子

Strange attractors in periodically perturbed Lorenz-like equation
下载PDF
导出
摘要 通过数值模拟研究一类拟Lorenz周期扰动方程,得到3类同宿缠结吸引子:周期汇、似Hénon吸引子和秩一吸引子.其中周期汇表示扰动方程出现吸引的周期轨,而似Hénon吸引子和秩一吸引子表示扰动方程出现SRB测度意义下的混沌现象.进一步,当扰动参数趋于零时,这3类吸引子重复出现,呈现一定的周期性.所得结果是二维同宿缠结理论在三维空间中的应用和推广. It was studied the dynamics of strange attractors in a through numerical simulation. Three types of strange attractors periodically perturbed Lorenz-like equation associated with homoclinic tangles: sink, Hrnon-like attractors and rank-one attractors were observed. Sinks represented the perturbed equation had at- tractive period solution. H6non-like attractors and rank-one attractors represented chaotic behaviors character- ized by SRB measures. It was illustrated that these three types of strange attractors occur repeatedly in a fixed pattern as the magnitude of the perturbation approached to zero. The study followed the line of the recent stud- ies on periodically perturbed two-dimensional system and the obtained results generalized these previous studies to three-dimensional equations.
出处 《浙江师范大学学报(自然科学版)》 CAS 2012年第2期143-149,共7页 Journal of Zhejiang Normal University:Natural Sciences
基金 浙江省创新团队项目(T200905)
关键词 拟Lorenz方程 似Hénon吸引子 秩一吸引子 SRB测度 Lorenz-like equation Henon-like attractor rank one attractor SRB measure
  • 相关文献

参考文献12

  • 1H6non M. A two-dimensional mapping with a strange attractor[ J]. Commun Math Phys, 1976,50 (1) :69-77.
  • 2Young L S. What are SRB measures, and which dynamical systems have them? [ J ]. J Stat Phys,2002,108 (5/6) :733-754.
  • 31 Sinai Y G. Gibbs measure in ergodie theory [ J ]. Russ Math Surv, 1972,27 (4) :21-69.
  • 4Ruelle D. A measure associated with axiom a attractors [ J ]. Am J Math, 1976,98 ( 3 ) : 619 -654.
  • 5Bowen R. Equilibrium states and the ergodic theory of anosov diffeomorphisms [ M ]. Berlin: Springer-Verlag,2008:1-77.
  • 6Wang Q, Oksasoglu A. Periodic occurrence of chaotic behavior of honaoclinic tangles [ J ]. Physica D,2010,239 (7) :387-395.
  • 7Wang Q, Oksasoglu A. Dynamics of homoclinic tangles in periodically perturbed second-order equations [ J ]. J Differ Equations,2011,250 (2) : 710-751.
  • 8Wang Q, Oksasoglu A. Rank one chaos : theory and applications [ J ]. Int J Bifurcat Chaos,2008,18 (5) : 1261-1319.
  • 9Wang Q, Oksasoglu A. Strange attractors and their periodic repetition [ J ]. Chaos,2011,21:013128.
  • 10]Wang Q, Young L S. Towards a theory of rank one attractors [ J ]. Ann Math ,2008,167 (2) :349-480.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部