期刊文献+

纳/微结构Sn-C复合负极材料的制备及其充放电性能 被引量:1

Preparation and charging-discharging property of nano-microstructure Sn-C anode composites
下载PDF
导出
摘要 采用非水溶液溶胶-凝胶法,并结合高温碳热还原法制备锂离子电池用高可逆容量的Sn-C复合负极材料,通过调节Sn源与炭源的比例及碳热还原过程中的升温制度来控制金属Sn的粒度和Sn-C复合材料的结构形态。借助XRD、EDS、SEM、循环伏安及恒流充放电测试对材料的物化性能进行表征。结果表明,当Sn源与C源质量比为80:20、还原温度为800℃时,纳米级金属Sn均匀紧密地分布在无定形热解炭基体中,形成良好的纳/微复合结构,此时复合材料性能相对最优;该复合材料在电流密度为100 mA/g,首次可逆比容量为637.9 mAh/g,循环30次后充电容量保持在372.5 mAh/g以上,第二次循环库伦效率达到97%以上。 Sn/C composites were synthesized via the anhydrous sol-gel method united with high temperature carbon thermal reduction method as a lithium battery of high reversible capacity anode.The morphology and granulometric distribution of the Sn/C composites were controlled by adjusting Sn/C ratio and the heating schedule during carbon thermal reduction.Physical and electrochemical properties were investigated by XRD,EDS,SEM,potential-sweep cyclic voltammetry,and galvanostatic charge and discharge tests.The results show that nano-scale Sn particles disperse evenly in a carbon matrix and form a kind of nano-micron structure when the mass ratio of the stannic oxide and phenolic resin is 80:20 at the reduction temperature of 800 ℃.The Sn/C composite exhibits an initial reversible capacity of 637.9 mAh/g at first cycle,decays to a stable value of 372.5 mAh/g after 30 cycles,and coulomb efficiencies of 97% are obtained after the first cycle at constant current density of 100 mA/g.
出处 《粉末冶金材料科学与工程》 EI 北大核心 2012年第2期182-188,共7页 Materials Science and Engineering of Powder Metallurgy
基金 国家自然科学基金资助项目(50974136 51074185) 中央高校基本科研业务费专项基金资助
关键词 锂离子电池 纳-微结构 溶胶-凝胶法 碳热还原法 lithium ion battery nano-micron structure sol-gel method carbon thermal reduction method
  • 相关文献

参考文献19

  • 1GARY M K, LLIAS B, DENG H X, et al. Composition-tailored synthesis of gradient transition metal precursor particles for lithium-ion battery cathode materials [J]. Journal of Chemistry Materials, 2011, 23(7): 1954-1963.
  • 2KUI H F, OHSUK G HINO T. influence of polystyrene/phenyl substituents in precursors on microstructures of Si-O-C composite anodes for lithium-ion batteries [J]. J Power Sources, 2011, 196: 371-378.
  • 3YANG Y, MCDOWELL T, JACKSON, et al. New nanostructured Li2S/silicon rechargeable battery with high specific energy [J]. J Nano Letters, 2010, 10(4): 1486-1491.
  • 4HASSOUN J, FERNICOLA A, NAVARRA M A, et al. An advanced lithium-ion battery based on a nanostructured Sn-C anode and electrochemically stable LiTFSi-Py24TFSI ionic liquid electrolyte [J]. Journal of Power Sources, 2010, 195(2): 574-579.
  • 5HE Jian-chao, ZHAO Hai-lei, WANG Meng-wei, et al. Preparation and characterization of Co-Sn-C anodes for lithium-ion batteries [J]. Materials Science and Engineering B, 2010, 171(1/3): 35-39.
  • 6ZOU Lin, GAN Lin, KANG Fei-yu, et al. Sn/C non-woven film prepared by electrospinning as anode materials for lithium ion batteries [J]. Journal of Power Sources, 2010, 195(4): 1216- 1220.
  • 7NG Man-fai, ZHENG Jian-wei, WU Ping. Evaluation of Sn nanowire encapsulated carbon nanotube for a Li-ion battery anode by DFT calculations [J]. The Journal of Physical Chemistry C, 2010, 114(18): 8542-8545.
  • 8LI Ju-chuan, YANG Fu-qian, YE Jia, et al. Whisker formation on a thin film tin lithium-ion battery anode [J]. Journal of Power Sources, 2011, 196(3): 1474-1477.
  • 9CHEN J S, CHEAH Y L, CHEN Y T, et al. SnO2 nanoparticles with controlled carbon nanocoating as high-capacity anode materials for lithium-ion batteries [J]. The Journal of Physical Chemistry C, 2009, 113(47): 20504-20508.
  • 10胡思江,李庆余,黄世稳,王红强,王芳平,钟新仙.多孔泡沫铜支撑锡薄膜阳极材料的制备及性能[J].中国有色金属学报,2009,19(11):2006-2010. 被引量:7

二级参考文献20

  • 1INABA M, UNO T, TASAKA A. Irreversible capacity of electrodeposited Sn thin film anode[J]. J Power Sources, 2005, 146(1/2): 473-477.
  • 2CHOI W, LEE J Y, JUNG B H, LIM H S. Microstructure and electrochemical properties of a nanometer-scale tin anode for lithium secondary batteries[J]. J Power Sources, 2004, 136(1): 154-159.
  • 3PRIDATKO K I. Electrochemical insertion of lithium in thin tin films[J]. Russ J Electrochem, 2006, 42(1): 63-70.
  • 4MORIMOTO H, TOBISHIMA S, NEGISHI H. Anode behavior of electroplated rough surface Sn thin films for lithium-ion batteries[J]. J Power Sources, 2005, 146(1/2): 469-472.
  • 5WHITEHEAD A H, ELLIOTT J M, OWEN J R. Nanostructured tin for use as a negative electrode material in Li-ion batteries[J]. J Power Sources, 1999, 81/82: 33-38.
  • 6ZHAO Z W, GUO Z P, WEXLER D, MA Z F, WU X, LIU H K. Titania nanotube supported tin anodes for lithium intercalation[J]. Electrochem Commun, 2007, 9(4): 697-702.
  • 7PARK M S, WANG G X, KANG Y M, WEXLER D, DOU S X, LIU H K. Preparation and elctrochemical properities of SnO2 nanowires for application in lithium-ion batteries[J]. Angew Chem Int Ed, 2007, 46(5): 750-753.
  • 8LEE K T, JUNG Y S, OH S M. Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries[J]. J Am Chem Soc, 2003, 125(19): 5652-5653.
  • 9KE F S, HUANG L, JIANG H H, WEI H P, YANG F Z, SUN S G. Fabrication and properties of three-dimensional macroporous Sn-Ni alloy electrodes of high preferential (110) orientation for lithium ion batteries[J]. Electrochem Commun, 200-7, 9(2): 228-232.
  • 10HIRAI K, ICHITSUBO T, UDA T, MIYAZAKI A, YAGI S, MATSUBARA E. Effects of volume strain due to Li-Sn compound formation on electrode potential in lithium-ion batteries[J]. Acta Materialia, 2008, 56(7): 1539-1545.

共引文献6

同被引文献11

  • 1INABA M, UNO T, TASKA A. Irreversible capacity of electrodeposited Sn thin film anode [J]. J. Power Sources, 2005, 146(1/2): 473-477.
  • 2WINTER M, BESENHARD J O. Electrochemical lithiation of tin and tin-based intermetallics and composites [J]. Electrochim Acta, 1999, 45(1/2): 31-50.
  • 3SUN X M, LIU J F, LI Y D. Oxides@C Core/Shell Nano structures: coupled synthesis, rational conversion and Li^+-Battery application [J]. J. Chem. Mater, 2006, 18: 3486-3494.
  • 4SUN X, LIU J, LI Y. Use of Carbonaceous polysaccharide microspheres as templates for fabricating metal oxidehollow spheres [J]. Chem.Eur:J, 2006, 12: 2039-2047.
  • 5ZHANG B H, YU X Y, GE C Y, et al. Novel 3-D superstructures made up of SnO2@C core-shell nanoehains for energy storage applications [J]. Chem Commun, 2010, 46: 9188-9190.
  • 6LOU X W, LI C M, ARCHER L A. Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage [J]. Adv. Mater, 2009, 21: 2536-2539.
  • 7WANG X, XI G, XIONG S, et al. Solution-phase synthesis of Single-Crystal CuO nanoribbons and nanorings [J]. Cryst. Growth Des, 2007, 7: 930-934.
  • 8YU X Y, YANG S Y, ZHANG B H, et al. Controlled synthesis of SnO2/carbon core-shell nanochains as high-performance anodes for lithium-ion batteries [J]. J. Chem.Mater, 2011, 21: 12295-12302.
  • 9FAN X Y, ZHUANG Q C, JIANG H H, et al. Three-dimensional porous Cu6Sn5 alloy anodes for lithium-ion batteries [J]. Acta Phys-Chim Sin, 2007, 23(7): 973-977.
  • 10WANG G, MAY Q, LIU Z Y, et al. Novel highly porous Sn-C composite as high performance anode material for lithium-ion batteries [J]. Electrochimica Acta, 2012, 65: 275-279.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部