期刊文献+

一类非自治二阶系统的周期解 被引量:2

Periodic Solutions for Some Non-autonomous Second Order Systems
下载PDF
导出
摘要 文章的主要目的是研究一类二阶哈密顿系统的周期解的存在性。通过使用最小作用原理获得了一个新的存在性定理。 The purpose of this paper is to study the existence of periodic solutions of a class of second order Hamiltonian systems.One new existence theorem is obtained by using the least action principle.
出处 《大理学院学报(综合版)》 CAS 2012年第4期11-13,共3页 Journal of Dali University
基金 云南省教育厅科学研究基金项目(09Y0367)
关键词 周期解 最小作用原理 Sobolev's不等式 periodic solutions the least action principle Sobolev's inequality
  • 相关文献

参考文献10

  • 1Tang C L. Periodic solutions for non-autonomous second order systems with sublinear nonlinearity [J]. Proc. Amer. Math. Soc., 1998 (126) : 3263-3270.
  • 2Ma J,Tang C L. Periodic solutions for some nonautonomous second-order systems[J]. J. Math. Anal. Appl., 2002 (275):482-494.
  • 3Mawhin J and Willem M. Critical Point Theory and Hamihonian Systems [M~.Bedin : Springer-Vedag, 1989.
  • 4Tang C L. Periodic solutions for non-autonomous second order systems with sublinear nonlinearity[J]. Proc. Amer. Math. Soc., 1998 (126) : 3263-3270.
  • 5Tang C L. Periodic solutions of non-autonomous second order systems with quasisub-additive potential [J]. J. Math. Anal. Appl., 1995 (189): 671-675.
  • 6Tao Z L, Tang C L. periodic and subharmonic solutions of second order Hamihonian systems [J]. J. Math. Anal. Appl., 2004 (293) :435-445.
  • 7Tang C L. Periodic solutions of non-autonomous second order systems [J]. J. Math. Anal. Appl., 1996(202):465-469.
  • 8Wu X P, Tang C L. Periodic solutions of a class of non-autonomous second order systems [J]. J. Math. Anal. Appl., 1999 (236) : 227-235.
  • 9Rabinowitz P H. On subharmonic solutions of Hamihonian systems[J]. Comm. Pure Appl. Math., 1980(33): 609-633.
  • 10Tang C L, Wu X P. Periodic solutions for second order systems with not uniformly coercive potential[J]. J. Math. Anal. Appl., 2001(259): 386-397.

同被引文献20

  • 1Wu Xian,Chen Shaoxiong,Teng Kaimin.On variationalmethods for a class of damped vibration problems[ J].Nonlinear Anal., 2008,68(6): 1432-1441.
  • 2Berger M, Schechter M.On the solvability of semi -lineargradient operator equations[J]. Adv. Math., 1977,25 ( 2 ):97-132.
  • 3Mawhin J,Willem M.Critical Point Theory and HamiltonianSystems [M].Springer-Verlag:Berlin/ New York, 1989.
  • 4Mawhin J.Semi-coercive monotone variational problems [j].Acad. Roy. Belg. Bull. Cl. Sci., 1987,73(5): 118-130.
  • 5Ma Jian,Tang Chunlei.Periodic solutions for some non -2002,275(2),482-492.
  • 6Tang Chunlei-Eriodic solutions of non -autonomous secondorder systems with -quasisub-additive potential[J]. J. Math.Anal. Appl., 1995(189):671-675.
  • 7Tang Chunlei.Periodic solutions of non-autonomous secondorder systems[J]. J. Math. Anal AppL, 1996(202) : 465-469.
  • 8Tang Chunlei.Periodic solutions for non-autonomous secondorder systems with sublinear nonlinearity[J]. Proc. Amer.Math. Soc., 1998( 126) :3263-3270.
  • 9Tang Chunlei,Wu Xingping.Periodic solutions for secondorder systems with not uniformly coercive potential[J],J.Math. Anal. Appl., 2001 (259) : 386-397.
  • 10Wu Xingping,Tang Chunlei.Periodic solutions of a classof non-autonomous second order systems[J]. J. Math. Anal.Appl., 1999(236):227-235.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部