摘要
手势识别跟踪一般采用线下训练分类器,不能有效检测跟踪形变的手势,针对手势形变及在窗口的暂时性消失等问题,提出了一种通过线下训练结合线上提取样本对分类器进行训练的检测方法,同时采用跟踪-检测-学习(TLD)的方法不断对跟踪器的结果进行纠正。试验结果表明,本算法对手势形变、短暂消失具有很好的适应性,与TLD算法相比较具有更好的稳定性。
Hand gesture recognition and tracking methods usually adopt offline training classifier,but the deformation of hand gesture can cause drift problem.In order to achieve more stability long time tracking,a novel detection method based on offline and online was presented,combined with TLD method to revise tracker.Experimental result shows this system could achieve more stability in hand gesture deformation and provisional disappear and it is more stable than TLD algorithm.
出处
《桂林电子科技大学学报》
2012年第2期125-128,共4页
Journal of Guilin University of Electronic Technology
基金
广西自然科学基金(桂科青0728090)
关键词
手势识别
手势跟踪
Haar特征级联器
线上检测器
hand gesture recognition
hand gesture tracking
Haar cascade classifier
online classifier