期刊文献+

多层AlGaAs的时间分辨归一化反射率及各向异性反射率谱在线监测及分析 被引量:1

In Situ Monitoring and Analysis of Normalized Reflectance and Reflectance Anisotropy of Multilayer AlGaAs Structure
下载PDF
导出
摘要 通过光学在线监测技术对多层AlxGa1-xAs样品生长过程中的生长速率与表面结构进行了分析。描述了选取合适探测光子能量的方法并在线监测了样品生长过程中表面归一化反射率(Normalized Reflectance,NR)和各向异性反射率(Reflectance Anisotropy,RA)随生长时间的变化,得到了样品的时间分辨NR及RA曲线,利用光学干涉原理解释了NR曲线的振荡衰减特性。不同AlxGa1-xAs层NR曲线收敛值随Al组分的单调变化被认为是材料的折射率变化引起的,而RA值随Al组分的增加而增加说明Al原子的并入对表面光学各向异性有影响。通过拟合每一层材料的归一化反射谱振荡曲线得到了各层生长速率,与扫描电镜测试结果差别小于0.02 nm/s。对时间分辨RA曲线分析发现,生长温度对GaAs表面原子结构产生了影响。 The growth rate and surface structure of AlGaAs sample were investigated by employing the optical in-situ monitoring technique.In situ monitoring of optical time resolved normalized reflectance(NR) and reflectance anisotropy(RA) in growth process of multilayer AlxGa1-xAs sample was carried out.Oscillation characteristics of NR curve was analyzed.Converged value of NR and RA curve changed monotonously with Al composition at the monitoring optical energy of 1.9 eV.The growth rate was gained from fitting the NR transient.And the deviation of calculated growth rate was lower than 0.02 nm/s compared to the SEM measurement results.From the analysis of time resolved RA curve,surface reconstruction caused by the growth temperature was observed during the epi-growth of GaAs layers.
出处 《发光学报》 EI CAS CSCD 北大核心 2012年第5期509-513,共5页 Chinese Journal of Luminescence
基金 国家自然科学基金(60876036,10974012,11074247,60876036,61106047),国家自然科学基金重点(90923037)资助项目
关键词 归一化反射率 各向异性反射率 在线监测技术 MOCVD normalized reflectance reflectance anisotropy spectroscopy in-situ monitoring MOCVD
  • 相关文献

参考文献2

二级参考文献18

  • 1孙艳芳,金珍花,宁永强,秦莉,晏长岭,路国光,套格套,刘云,王立军,崔大复,李惠青,许祖彦.高功率底发射VCSELs的制作与特性研究[J].光学精密工程,2004,12(5):449-453. 被引量:15
  • 2李特,宁永强,孙艳芳,崔锦江,郝二娟,秦莉,套格套,刘云,王立军,崔大复,许祖彦.980nm高功率VCSEL的光束质量[J].中国激光,2007,34(5):641-645. 被引量:19
  • 3Iga K. Fundamental and Applications of Sur]ace Emitting Lasers [ M ]. Beijing : Science Press, 2002, Chapter 7 : 1-2.
  • 4Iga K. Vertical-cavity surface-emitting laser:Its conception and evolution [ J]. Japanese J. Appl. Phys. , 2008, 47 ( 1 ) :1- 10.
  • 5Jewell J L, Schere A, McCall S L, et al. Low-threshold electrically pumped vertical-cavity surface-emitting microlasers [J]. Electron. Lett. , 1989, 25(17) :1123-1124.
  • 6Geels R S, Corzine S W, Scott J W, et al. Low-threshold planarized vertical-cavity surface-emitting lasers[ J]. IEEE Pho- ton Technol. Lett. , 1990, 2( 1 ) :234-236.
  • 7Orenstein M, Von Lehmen A C, Chang-Hasnain C, et al. Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral denfinition [J]. Appl. Phys. Lett. , 1990, 56(24) :2384-2386.
  • 8Tell B, Lee Y H, Brown-Goebeler K F, et al. High-power cw vertical-cavity top surface-emitting GaAs quantum well lasers[J]. Appl. Phys. Lett. , 1990, 57(18):1855-1857.
  • 9Huffaker D L, Deppe D G, Kumar K, et al. Native-oxide defined ring contact for low thresold vertical-cavity lasers [J]. Appl. Phys. Lett., 1994, 65(1) :97-99.
  • 10Choquette K D, Hou H Q. Vertical-cavity surface emitting laser: Moving from research to manufacturing [ J ]. Proc. IEEE, 1997, 85 ( 11 ) : 1730-1739.

共引文献10

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部