摘要
针对超宽带通信系统采样速率过高的难题,利用超宽带信道冲击响应的稀疏性,提出了一种基于卡尔曼滤波压缩感知的时变信道估计算法.通过将直接序列调制的超宽带发送信号进行下采样,建立压缩感知的数学模型,接收端通过卡尔曼滤波压缩感知的重构算法对信道的冲击响应进行重构.仿真结果表明,对于时变的超宽带信道采用卡尔曼滤波压缩感知算法,不仅可以有效降低采样点数,而且提高了信道估计的准确性.
Considering the sparsity of the channel impulse response,a novel time-varying channel estimation approach based on Kalman filter compressed sensing(KF-CS) is proposed to deal with the high sampling problem of ultra wideband(UWB) system.The direct sequence UWB signal is formulated to the mathematical model of compressed sensing after down sampling.The receiver recovers the channel impulse response by Kalman filter compressive sensing algorithm.The simulation results demonstrate that the proposed scheme can reduce the quantity of required sampling points and improve the accuracy of the estimation.
出处
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2012年第2期170-173,183,共5页
Transactions of Beijing Institute of Technology
基金
国家重大科技专项资助项目(2009ZX03006009)
韩国知识经济部项目(NIPA-2011-C1090-1111-0007)
关键词
超宽带
信道估计
压缩感知
卡尔曼滤波
ultra wideband
channel estimation
compressed sensing
Kalman filter