期刊文献+

稀疏编码在静息态核磁共振图像中的应用

Numerical Study of Resting-State FMRI Based on Sparse Coding
下载PDF
导出
摘要 为了提取静息态的默认网络,降低核磁共振图像中的数据运算量,本文提出了数据降维和非线性变换的方法。首先,对核磁共振图像进行主成分分析,降低运算维度和数据复杂度。然后,对静息核磁数据进行稀疏编码学习,提取默认网络。实验结果表明,稀疏编码学习的效果优于传统的独立成分分析,且前者提取默认网络更加迅速,噪声更低。 In order to extract the default mode network(DMN) and to reduce the data complexity of the functional magnetic resonance imaging(FMRI),a framework of dimensionality reduction and nonlinear transformation is proposed.First,the principal component analysis(PCA) is applied to reduce the time dimension of the FMRI data for simplifying complexity computation and obtaining most of the information.Secondly,modeling the resting-state FMRI data with a sparse decomposition is done to extract the DMN.Experimental results show that the sparse coding provides a better performance for the resting-state FMRI data analysis compared with the classical ICA.Furthermore,the DMN is accurately extracted and the noise is reduced.
作者 黄钦钦
出处 《信息化研究》 2012年第2期68-70,共3页 INFORMATIZATION RESEARCH
关键词 稀疏编码 主成分分析 功能核磁共振成像 静息态 sparse coding principal component analysis functional magnetic resonance imaging(FMRI) resting-state
  • 相关文献

参考文献8

  • 1赵小虎,王培军,唐孝威.静息状态脑活动及其脑功能成像[J].自然科学进展,2005,15(10):1160-1166. 被引量:19
  • 2Biswal B, Yetkin F Z, Haughton V M,et al. Functional connectivity in the motor cortex of resting human brain using echo - planar MRI[J]. Magnetic resonance in medicine, 1995,34(4):537 - 541.
  • 3Damoiseaux J S, Rombouts S A, Barkhof F, et al. Consistent resting-state networks across healthy subjects[J]. Proceedings of the national academy of sciences, 2006, 103 (37):13848- 13853.
  • 4Gusnard D A, Raichle M E. Searching for a baseline functional imaging and the resting human brain[J]. Nature reviews neuroseience, 2001,2(10) : 685 - 694.
  • 5Raichte M,MacLeod A,Snyder A,et al. A default mode of brain function[J]. Proceedings of the National Academy of Sciences, 2001,98(2):676 - 682.
  • 6Mairal J,Bach F, Ponce J, et al. Online learning for matrix factorization and sparse coding[J]. The journal of machine learning research, 2010 (11) : 19 - 60.
  • 7Wold S, Esbensen K, Geladi P, et al. Principal component analysis[J]. Chemometrics and intelligent laboratory systems, 1987,2(3):37 - 52.
  • 8Raina R, Battle A, Lee H, et al. Self-taught learning transfer learning from unlabeled data[C]//Proceedings of the international conference on machine learning (ICML). Stanford university USA: In Proc ICML, 2007 : 759 - 766.

二级参考文献47

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部