期刊文献+

简谐激励下轮轨非稳态滚动接触的蠕滑力特性 被引量:3

Properties of Wheel-rail Creep Forces in Non-steady States under Sinusoidal Excitation
下载PDF
导出
摘要 轮轨非稳态滚动接触是指接触斑内的质点在滚动接触过程中,接触斑的外形和其他参数产生快速变化的过程,这时运动波长L与接触斑纵轴半径a处于同一数量级。本文使用Kalker三维滚动接触理论计算轮轨蠕滑率、法向力、钢轨轨面接触几何简谐激励时的非稳态蠕滑力,并与由稳态滚动接触理论计算的结果进行比较。其结果表明:在小蠕滑状态下,非稳态滚动接触的蠕滑力随L/a(简称波长比)的增长而产生明显的幅值衰减和相位滞后。在蠕滑率和钢轨轨面接触几何简谐激励时,非稳态蠕滑力的变化规律可用波长比L/a的传递函数描述,而法向力情况却不能。对于短波波磨等非稳态滚动接触行为,应使用非稳态滚动接触理论进行分析。 The non-steady state wheel-rail rolling contact is a process in which one or more of contact parame- ters are changing significantly during the passage of a particle through the contact patch. In the non-steady state, the motion wavelength L and the contact semi-axis a in the rolling direction are in the same magnitude. This paper focuses on the property of the wheel-rail creep force in the non-steady state in which the contact pa- rameters vary as sinusoidal waveforms. The creep forces under sinusoidally varying creepages, normal forces and vertical irregularities are computed respectively by the Kalker 3D rolling contact theory and are compared with results of the steady rolling contact theory. Calculation results show as follows. Under small creep condi- tions, the fluctuating part of the unsteady creep force decreases in amplitude and lags in phase along with grow- ing of the wavelength ratio L/a; the creep force under sinusoidally varying creepages and vertical irregularities can be described as the transfer functions of the dimensionless frequency a/L, but it is hard to find the similar transfer functions for the case of the normal force; the wheel-rail rolling contact problems such as the rail short-pitch corrugation should be solved with the non-steady state theory.
作者 任利惠 谢纲
出处 《铁道学报》 EI CAS CSCD 北大核心 2012年第5期32-40,共9页 Journal of the China Railway Society
基金 国家自然科学基金(50905128) 国家科技支撑计划(2009BAG11B00)
关键词 轮轨接触 非稳态 蠕滑力 传递函数 wheel-rail contact non-steady state creep force transfer function
  • 相关文献

参考文献16

  • 1KALKER J. Transient Phenomena in Two Elastic Cylin- ders Rolling over Each Other with Dry Friction[J]. Journal of Applied Mechanics, 1970, 37(3)= 677-688.
  • 2KALKER J. Three-dimension Elastic Bodies in Rolling Contact[M]. Dordrecht, Netherland.. Kluwer Academic Publishers, 1990.
  • 3KNOTHE K, GROSS-THEBING A. Derivation of Fre- quency Dependent Creep Coefficients Base on an Elastic Half-space Model[J]. Vehicle System Dynamics, 1986, 15(2) : 133-153.
  • 4GROSS-THEBING A. Frequency-dependent Creep Coeffi- cients for Three-dimensional Rolling Contact Problem[J]. Vehicle System Dynamics, 1989, 18(6): 677-688.
  • 5HEMPELMANN K, KNOTHE K. An Extended Linear Model for the Prediction of Short Pitch Corrugation[J]. Wear, 1996, 191(1 2): 161-169.
  • 6MIILLER S. A Linear Wheel-track Model to Predict Insta- bility and Short Pitch Corrugation[J]. Journal of Sound and Vibration, 1999, 227(5): 899-913.
  • 7SHEN Z, LI Z. A Fast Non-steady State Creep Force Model Based on the Simplified Theory[J]. Wear, 1996, 191(1-2) : 242-244.
  • 8ALONSO A, GIMENEZ J. Non-steady State Modelling of Wheel-rail Contact Problem for the Dynamic Simulation of Railway Vehicle[J]. Vehicle System Dynamics, 2008, 45(3):341-357.
  • 9XIE G, IWNICKI S. Calculation of Wear on a Corrugated Rail Using a Three dimensional Contact Model[J]. Wear, 2008,265(9-10), 1238-1246.
  • 10SHEN Z, HEDRICK J, ELKINS J. A Comparison of Al- ternative Creep Force Models for Rail Vehicle Dynamics Analysis[J]. Vehicle System Dynamics, 1983, 12 (1) .. 70-82.

二级参考文献31

  • 1GRASSIE S L, KALOUSEK J. Rail corrugation: character istics, causes and treatments[J]. Proceedings of the Institu tion of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 1993, 207(1): 57-68.
  • 2MULLER S. A linear wheehrack model to predict instability and short pitch corrugation[J]. Journal of Sound and Vibration, 1999, 227(5): 899-913.
  • 3HEMPEI.MANN K, KNOTHE K, An extended linear model for the prediction of short pitchcorrugation[J].Wear, 1996. 191(1/2): 161-169.
  • 4X1E GANG, IWNICK1 S D. Calculation of wear on a corrugated rail using a three dimensional contact model[J]. Wear, 2008, 265(9,10): 1238 1246.
  • 5XIE GANG, IWNICK1 S D. Simulations of roughness growth on rails-results from non Hertzain, non-steady contact model[J]. Vehicle System Dynamics, 2008, 46( 1/2): 117- 128.
  • 6KNOTHE K, GROSS-THEBING, A. Short wavelength rail corrugation and non steady state contact mechanics[J]. Vehicle System Dynamics, 9008, 46(1/2): 49 -66.
  • 7KALKER J J. Transient phenomena in two elastic cylinders rolling over each other with dry frietion[J]. Journal of Applied Mechanics, 1970, 37(3): 677- 688.
  • 8KNOTHE K, GROSS THEBING A. Derivation of frequency dependent creep coefficients based on an elastic half space model[J]. Vehicle System Dynamics, 1986, 15(3): 133 -153.
  • 9GROSS THEBING A. Frequency dependent creep coefficients for three-dimensional rolling contact problem [J]. Vehicle System Dynamics, 1989, 18(6): 359- 374.
  • 10ALONSO A, GIMENEZ J. Non steady state modelling of wheel rail contact problem for the dynamic simulation of rail way vehicles[J]. Vehicle System Dynamics, 2008, 46(3): 179-196.

共引文献9

同被引文献29

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部