期刊文献+

3D刚体摆动力学的离散变分数值方法研究 被引量:1

Discrete variation method for numerical attitude equation for 3D rigid pendulum
下载PDF
导出
摘要 利用离散变分的数值积分方法研究3D刚体摆(3 Dimensional rigid pendulum)的姿态动力学数值计算问题。针对3D刚体摆的运动学及动力学方程解的稳定性及其能量、角动量与范数进行了数值仿真。在离散变分方法中引入李群概念,首先对3D刚体摆模型的简化形式——球摆做数值求解,然后分别对3D刚体摆的悬垂及倒置两种特殊情况进行数值求解,并将其结果与4阶龙格-库塔方法求解的结果进行比较。从数值仿真实验中可以看出,离散变分的数值积分方法相比龙格-库塔方法具有更高的精度。由此可得出李群离散变分方法具有较好的保结构及保能量特性。 The numerical method of attitude equation for 3D(3 Dimensional)rigid pendulum is studied in this paper with discrete variation method.The simulation diagram of energy,angular momentum and norm for 3D rigid pendulum is made with MATLAB.Firstly,the basic concept of Lie group is introduced into discrete variation method,and then the attitude equation of spherical pendulum is solved as an special model of 3D rigid pendulum with this method.Secondly,the solving method of their attitude equation is studied,and the result is compared with that of Runge-Kutta method.It is concluded that the discrete variation is a high-precision symplectic method.
出处 《北京信息科技大学学报(自然科学版)》 2012年第2期78-82,96,共6页 Journal of Beijing Information Science and Technology University
基金 国家自然科学基金(11072038) 北京市自然科学基金(KZ201110772039)重点项目
关键词 离散变分 龙格-库塔 姿态动力学 3D刚体摆 discrete variation Runge-Kutta method attitude dynamics 3D rigid pendulum
  • 相关文献

参考文献10

  • 1Hairer E,Lubich C,Wanner G.Geometric numerical integration,volume31of Springer Series in Computational Mathematics[M].2nd ed.Berlin:Springer-Verlag,2006.
  • 2Leimkuhler B,Reich S.Simulating hamiltonian dynamics,volume14of Cambridge monographs on applied and computational mathematics[M].England:Cambridge University Press,2004.
  • 3Sanz-Serna J M.Symplectic integrators for Hamiltonian problems:an overview[M].England:Cambridge University Press,1992.
  • 4Marsden J E,West M.Discrete mechanics and variational integrators[M].England:Cambridge University Press,2001.
  • 5Moser J,Veselov A P.Discrete versions of some classical integrable systems and factorization of matrix polynomials[J].Communications in Mathematical Physics,1991,139:217-243.
  • 6Iserles A,Munthe-Kaas H,Nrsett S P,et al.Lie-group methods[M].England:Cambridge University Press,2000.
  • 7Lee Taeyoung,Leok M,McClamroch N H.Lie group variational integrators for the full body problem[J].Computer Methods in Applied Mechanics and Engineering,2007,196:2907-2924.
  • 8Leok M.Foundations of computational geometricmechanics[D].California:Instittute of Technology,2004.
  • 9Marsden J E,Pekarsky S,Shkoller S.Discrete Euler-Poincar'e and Lie–Poisson equations[J].Non-linearity,1999,12(6):1647-1662.
  • 10Lee,Taeyoung McClamroch N Harris,Leok Melvin.A lie group variational integrator for the attituded dynamics of a rigid body with applications to the3D pendulum[C] ∥2005 IEEE Conference on Control Applications.Toronto:IEEE Conference on Control Applications,2005.

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部