期刊文献+

基于核回归方法的人脸检测技术

A Method of Face Detection based on Kernel Regression
下载PDF
导出
摘要 核回归法是一种非参数估计方法,其显著优点是:回归模型完全由数据驱动,无需信号具体形式。近些年来,有研究者将该方法应用在图像降噪和图像修补等方面,得到较好效果。在理解该方法原理的基础上,通过实验说明核回归方法在人脸检测技术方面也值得应用,而且效果较好。 The Kernel regression is a nonparametric estimation methods,it is an important advantage that the method relies on the data itself to dictate the structure of the model without knowing the form of signal.In recent years,some researchers taked the method into image denoising and image retrieval,and they obtained the excellent effect.But the method is applied to face detection in a few studies.This paper introduces that the method is extended to face detection,and shows the effect of experiment.
出处 《微处理机》 2012年第2期58-61,共4页 Microprocessors
关键词 核回归 人脸检测 权特征 Kernel regression Face detection Weight feature
  • 相关文献

参考文献10

  • 1L Wasserman.现代非参数统计[M].吴喜之,译.北京:科学出版社,2008.
  • 2Wand M P, Jones M C. Kernel Smoothing [ C ]. Mono- graphs on Statistics and Applied Probability, New York: Chapman & Ha11,1995.
  • 3Hardle W, Muller M, Sperlich S, Werwatz A. Nonparamet- ric and Semiparametric Models [ C ]. Springer Series in Statistics. New York : Springer ,2004.
  • 4Hiroyuki Takeda, Sina Farsiu and Peyman Milanfar. Ker- nel Regression for Image Processing and Reconstruction [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007,16 (2) :349 - 366.
  • 5Ruppert D, Wand M P. Multivariate locally weighted least squares regression [ J ]. Ann. Statist, 1994,22 ( 3 ) : 1346 - 1370.
  • 6Feng X, Peyman Milanfar. Multiscale principal compo- nents analysis for image local orientation estimation [ C ]. presented at the 36th Asilomar Conf. Signals,Systems and Computers, Pacific Grove, CA. 2002.
  • 7Ma Y, Lao S,Takikawa E, Kawade M. Diseriminant Anal- ysis in Correlation Similarity Measure Space [ J ]. Proc. Int' 1 Conf. Machine Learning ,2007,227:577 -584.
  • 8Hae Jong Seo, Peyman Milanfar. Training - Free, Generic Object Detection Using Locally Adaptive Regression Kernels[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2010,32 ( 9 ) : 1688 - 1704.
  • 9Viola P, ones M. Robust Real - Time Object Detection [J]. Int' 1 J. Computer Vision,2004,57 (2) : 137 - 154.
  • 10刘向东,陈兆乾.人脸识别技术的研究[J].计算机研究与发展,2004,41(7):1074-1080. 被引量:17

二级参考文献18

  • 1B Moghaddam,A Pentland.Probabilistic visual learning for object representation.IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(7):696~710
  • 2H-A Rowley,S Baluja,T Kanade.Neural network-based face detection.IEEE Trans on Pattern Analysis and Machine Intelligence,1998,20(1):23~38
  • 3A Yullie,P Hallinan,D Cohen.Feature exaction from faces using deformable templates.International Journal of Computer Vision,1992,8(2):99~111
  • 4M Turk,A Pentland.Eigenfaces for recognition.Journal of Cognitive Neuroscience,1991,3(1):71~86
  • 5D L Swets,J Weng.Discriminant analysis and eigenspace partition tree for face and object recognition from views.In:Proc of the 2nd Int'l Conf on Automatic Face and Gesture Recognition.Washington:IEEE Computer Society Press,1996.192~197
  • 6R Brunelli,T Poggio.HyperBF networks for gender classification.In:Proc of the DARPA Image Understanding Workshop.San Mateo:Morgan Kaufmann,1992.311~314
  • 7J Buhmann,M Lades,C Malsburg.Size and distortion invariant object recognition by hierarchical graph matching.In:Proc of the Int'l Joint Conf on Neural Networks.San Diego:IEEE Press,1990.411~416
  • 8V N Vapnik.The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995
  • 9J Weston,C Watkins.Multi-class support vector machines.Royal Holloway University of London,Tech Rep:CSD-TR-98-04,1998
  • 10G C Feng,P C Yuen.Multi cues eye detection on gray intensity images.Pattern Recognition,2001,34(5):1033~1046

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部