期刊文献+

融合图像预处理的人脸识别方法 被引量:1

Face Recognition Method Based on Image Pre-processing
下载PDF
导出
摘要 为了消除光照条件变化以及噪声等因素对人脸识别结果的影响,提出了对人脸图像进行一系列预处理工作,以去除影响人脸识别结果的相关不利因素,再结合主分量分析与线性鉴别分析的进行人脸识别.实验结果表明,所提出的方法不仅提高了识别率,而且减少了训练与分类时间. In this paper, based on a series of image preprocessing work to remove the unfavorable factors that affect the recognition results, combined with principal component analysis and linear discriminant analysis in order to eliminate the effects of changes in lighting conditions and noise factors such as face recognition results, for face rec- ognition. The experimental results show that the proposed method not only improves the recognition rate, and re- duces training and classification time.
出处 《云南民族大学学报(自然科学版)》 CAS 2012年第3期202-206,共5页 Journal of Yunnan Minzu University:Natural Sciences Edition
基金 广西壮族自治区自然科学基金(2009AM702)
关键词 图像预处理 主分量分析 线性判别分析 识别率 image preprocessing principal component analysis linear discriminant analysis recognition rate
  • 相关文献

参考文献7

  • 1KIRBY M, SIROVICH L. Application of the Karhunen-loeve procedure for the characterization of human faces [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12( 1 ) : 103 - 108.
  • 2TURK M, PENTLAND A. Eigenfaces for recognition[ J ]. Cognitive Neuroscience, 1991,3 ( 1 ) :71 - 86.
  • 3YU Hua, YANG Jie. A direct LDA algorithm for highdi- mensional data with application to face recognition [ J ]. Pattern Recognition ,2001 ( 34 ) : 2067-2070.
  • 4YANG J, ZHANG D. Two-dimensional PCA: a new approach to appearance - based face representation and recognition[ J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2004,26(8) : 982-994.
  • 5MING L, YUAN B. 2D-LDA : A statistical linear discriminant analysis for image matrix [ J ]. Pattern Recognition Letters, 2005, 26(5):527-532.
  • 6WANG Li-wei, WANG Xiao, ZHANG Xue-rong, et al. The equivalence of two dimensional PCA and line - based PCA [J]. Pattern Recognition Letters, 2005, 26 (1) : 57 - 60.
  • 7BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs fisherfaces: recognition using class specific linear projection[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19 (7) : 711 - 720.

同被引文献7

  • 1ROWLEY H A, BALUJA S, KANADE T. Neural network - based face detection[J]. Pattern Analysis and Machine Intel- ligence, IEEE Transactions on, 1998, 20( 1 ) : 23 -38.
  • 2BRUNELLI R, POGG10 T. Face recognition: Features ver- sus templates [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(10) : 1042 - 1052.
  • 3FREUND Y. Boosting a weak learning algorithm by majori- ty[J]. Information and Computation, 1995, 121 (2): 256- 285.
  • 4VIOLA P, JONES M. Rapid object detection using a boos- ted cascade of simple features[ C]//Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on. IEEE, 2001, 1: 1-511-I-518.
  • 5MCKENNA S J, GONG S, RAJA Y. Modelling facial col- our and identity with gaussian mixtures [ J ]. Pattern Recog- nition, 1998, 31(12) : 1883 - 1892.
  • 6YANG M H, AHUJA N. Detecting human faces in color images [ C ]//Image Processing, 1998, ICIP 98. IEEE, 1998, 1 : 127 - 130.
  • 7孙崇璇.基于PCA主成分分析的人脸检测实现与分析[J].云南民族大学学报(自然科学版),2010,19(6):439-443. 被引量:10

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部