期刊文献+

给定割点数的单圈图的第二大谱半径

The Second Largest Spectral Radii of Unicyclic Graphs with Fixed Number of Cut Vertices
下载PDF
导出
摘要 谱图理论的一个主要问题是研究图的结构性质如何由图的谱性质反映.割点数是图的重要结构参数,讨论了单圈图的割点数和谱半径之间的联系.在刻画了给定割点数的单圈图中具有最大谱半径图的结构基础上,延续这一讨论,刻画了在某些情形下,给定割点数的单圈图中具有第二大谱半径的图的结构. It is the main problem in spectral graph theory to discuss how the structural property of a graph is characterized by its spectral property.The number of cut vertices is an important structural parameter of graphs.This paper discuss the relations between the number of cut vertices and spectral radii of unicyclic graphs.In other conference,the graph with maximum spectral radius among all the unicyclic graphs with fixed number of cut vertices is determined.In this paper,we continue this work and characterize the graph with second largest spectral radius among all unicyclic graphs with fixed number of cut vertices in some cases.
出处 《合肥学院学报(自然科学版)》 2012年第2期17-21,共5页 Journal of Hefei University :Natural Sciences
关键词 单圈图 谱半径 割点 特征多项式 unicyclic graph spectral radius cut vertices characteristic polynomial
  • 相关文献

参考文献9

  • 1Berman A, Zhang X D. On The Spectral Radius of Graphs with Cut Vertices [ J ]. J Combin Theory Ser:B,2001,83:233-240.
  • 2Belardo F, Marzi E M L, Simic S K. Some Results on The Index of Unicyclic Graphs[J]. Linear Algebra Appl,2006,416: 1048-1059.
  • 3Chang A, Tian F. On The Spectral Radius of Unicyclic Graphs with Perfect Matchings[ J]. Linear Algebra Appl,2003,370: 237 -250.
  • 4Guo J M. On The Spectral Radii of Unicyclic Graphs With Fixed Matching Number[ J]. Discrete Math, 2008,308:6115- 6131.
  • 5Guo S G. The Spectral Radius of Unicyclic and Bicyclic Graphs With n Vertices and k Pendant Vertices [ J ]. Linear Algebra Appl,2005 ,408 :78-85.
  • 6Liu H Q, Mei L, Tian F. On The Spectral Radius of Unicyclic Graphs With Fixed Diameter[ J ]. Linear Algebra Appl,2007, 420:449-457.
  • 7Fan YiZheng, Zhang JingMei, Wang Yi. Spectral Radii of Unicyclic Graphs with Fixed Number of Cut Vertices [ J ]. Discrete Mathematics, Algorithms and Applications,2011,3 (2) : 139-145.
  • 8Hou Y P, Li J S. Bounds on The Largest Eigenvalues of Trees With A Given Size of Matching [ J ]. Linear Algebra Appl, 2002,342:203-217.
  • 9Cvetkovic D, Rowlinson P. The Largest Eigenvalues of A Graph: a Survey[ J]. Linear Muhilinear Algebra, 1990,28:3-33.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部