摘要
通过利用带惩罚项的FB函数将非线性互补问题转化为等价的光滑方程组.并在此基础上提出了一个求解P0-函数非线性互补问题的光滑牛顿法,同时给出了算法的全局收敛性以及局部二次收敛性结果.数值实验表明所提出的算法是有效的.
The nonlinear complementarity problem can be reformulated as the solution of the equivalent smoothness equations based on the FB-function of a penalized term.In this paper,we present a smooth Newton method for solving nonlinear complementarity problem with P0-function.Under mild conditions,we give the global and local quadratic convergence results of the proposed algorithm.Numerical experiments indicate that the proposed method is quite effective.
出处
《平顶山学院学报》
2012年第2期1-5,共5页
Journal of Pingdingshan University
基金
国家自然科学基金(11071041)
福建省自然科学基金(2009J01002)
关键词
非线性互补问题
光滑牛顿法
全局收敛性
局部二次收敛性
nonlinear complementarity problem
smooth Newton method
global convergence
quadratic convergence