期刊文献+

miRNAs基因的结构保守模式挖掘

Identifying Conserved Structure Patterns in miRNAs
下载PDF
导出
摘要 miRNA前体(pre-miRNAs)是产生成熟miRNAs的基因表达产物,能够形成较为稳定的茎—环(stem-loop)结构.为了深入研究miRNAs,对miRNAs前体的二级结构建模,并采用关联规则识别miRNAs基因在进化过程中的结构模式.通过分析产生的结构—类别关系(structure-category relationships)来探索miRNAs的功能特征和调节机制.为了获得较好的实验结果,改进传统的关联规则挖掘算法,应用支持度约束和频繁项集的聚类来优化数据挖掘结果. MicroRNAs precursors with stem-loop structure play a significant role in forming mature miRNAs.This paper aims to identify conserved structure patterns with association rule mining,by which to explore the regulatory characteristics of miRNAs.The secondary structure of miRNAs is modeled by stem-loop substructure as well as a flanking region.Support constraints are proposed to specify the generation of interesting frequent itemsets.Further,a novel measure is applied to cluster interesting frequent itemsets.These avoid generating redundant rules and enhance the efficiency of data mining.
出处 《平顶山学院学报》 2012年第2期53-58,共6页 Journal of Pingdingshan University
基金 国家自然科学基金项目(60973074)
关键词 MIRNAS 关联规则 支持度约束 聚类 miRNAs association rule support constraint cluster
  • 相关文献

参考文献15

  • 1Lee R C,Feinbaum R L,Ambros V.The C.elegans hetero-chronic gene lin-4 encodes small RNAs with antisensecomplementarity to lin-1[J].Cell,1993,75(5):843-854.
  • 2Bartel D P.Micrornas:Target recognition and regulatoryfunctions[J].Cell,2009,136(2):215-233.
  • 3Yousef M,Showe L,Showe M.A study of microRNAs insilico and in vivo:bioinformatics approaches to microRNAdiscovery and target identification[J].FEBS J,2009,276(8):2150-2156.
  • 4Gkirtzou K,Tsamardinos I,Tsakalides P,et.al.Mature-Bayes:A Probabilistic Algorithm for Identifying the MaturemiRNA within Novel Precursors[J].PLoS One,2010,5(8):1-14.
  • 5Chen F,Chen Y P.Exploring cross-species-relatedmiRNAs based on sequence and secondary structure[J].IEEE Trans Biomed Eng,2010,57(7):1547-1553.
  • 6Wang X W,Zhang J,Li F,et al.MicroRNA IdentificationBased on Sequence and Structure Alignment[J].Bioinfor-matics,2005,21(18):3610-3614.
  • 7Cong G,Tan K L,Anthony K H,et al.Mining top-K cov-ering rule groups for gene expression data[C].Baltimore:Proceedings of the 2005 ACM SIGMOD international con-ference on Management of data,2005:670-681.
  • 8Chen Q F,Chen Y P.Mining frequent patterns for AMP-activated protein kinase regulation on skeletal muscle[J].BMC Bioinformatics,2006,394(7):1-14.
  • 9Chen Q F,Chen Y P.Mining Characteristic Relations Bindto RNA Secondary structures[J].IEEE Transactions on In-formation Technology in Biomedicine,2010,14(1):10-15.
  • 10Agrawal R,Imielinski T,Swami A.Mining associationrules between sets of items in large databases[C].Wash-ington D C:Proceedings of the ACM SIGMOD InternationalConference on Management of Data,1993:207-216.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部