期刊文献+

图像统计模型参数估计中的期望最大值算法 被引量:6

Expectation maximization method for parameter estimation of image statistical model
原文传递
导出
摘要 期望最大值算法是近年来图像统计模型参数估计技术领域的研究热点之一。在对期望最大值算法分析的基础上,结合其在图像统计模型参数估计中的应用研究,对改变标准期望最大值算法的3种方式进行比较分析。结合图像恢复、分割、目标跟踪以及与其他优化算法的融合应用,从丢失数据集的选取、丢失数据集和不完全数据集统计模型的建立,以及统计模型参数估计3个方面,评述期望最大值算法优缺点。丢失数据的选取和不完全数据的描述形式直接决定期望最大值算法的结构和计算复杂度,以致算法的成败。最后,讨论期望最大值算法目前存在的问题及未来的发展方向,指出其在具有丢失数据统计模型参数估计中广泛应用。 Expectation maximization (EM) algorithm for parameter estimation of image statistical model is one of the striking research fields in recent decades. Based on the analysis of the EM algorithm, combining the current application research in parameter estimation of image statistical model, analysis and comparison are conducted in terms of the three improvement schemes of standard EM algorithm. In this paper, integrating image restoration, segmentation, object tracking and the fusion of other evolution optimization algorithms, through three aspects, such as the selection of missing data sets, the statistical model establishments of missing and incomplete data sets, and parameter estimation of image statistical models, as well as the advantages and disadvantages of the corresponding EM algorithm are exponded. The structure and complexity of EM algorithm, so far as to success or failure, are directly determined by the selection of missing data and the expression form of incomplete data. In the end, challenges and possible trends are discussed, and extensive applications of EM algorithm to parameter estimation of statistical model with missing data are pointed out.
作者 李旭超
出处 《中国图象图形学报》 CSCD 北大核心 2012年第6期619-629,共11页 Journal of Image and Graphics
基金 徐州师范大学2010年度自然科学基金项目(10XLR27)
关键词 期望最大值算法 图像统计模型 参数估计 进化算法 expectation maximization algorithm image statistical model parameter estimation evolution algorithm
  • 相关文献

参考文献47

  • 1Dempster A P, Lard N M, Rubin D B. Maximum likelihood from incomplete data via EM algorithm [ J ]. Journal of the Royal Statistics Society, 1977, 39 ( 1 ) : 1-37.
  • 2Wei G C G. , Tanner M A. A monte carlo implementation of the em algorithm and the poor man' s data augmentation algorithm [ J ]. Journal of the American Statistical Association, 1990, 85(441) : 699-704.
  • 3Wu C F J. On the convergence properties of the EM algorithm [ J ]. Annals of Statistics, 1983, 11 ( 1 ) : 95-103.
  • 4Figueiredo M A T, Nowak R D. An EM algorithm for waveletbased image restoration [ J ]. IEEE Transactions on Image Processing, 2003, 12(8): 906-916.
  • 5Meng X L, Rubin D B. Maximum likelihood estimation via the ECM algorithm: a general framework [ J]. Biometrika, 1993, 80(2) : 267-278.
  • 6张红梅,袁泽剑,蔡忠闽,卞正中.基于层次MRF的MR图像分割(英文)[J].软件学报,2002,13(9):1779-1786. 被引量:13
  • 7He D A, Cercone N, Gu Z M. Applying the extended massconstraint EM algorithm to image retrieval [ J]. Computers and Mathematics with Applications, 2008, 56(4) : 1-15.
  • 8Crouse M S, Nowak R D, Baraniuk R G. Wavelet-based statistical signal processing using hidden Markov models [ J ]. IEEE Transactions on Signal Process.ing, 1998, 46(4): 886- 902.
  • 9Donoho D L, Johustone I M. Adapting to unknown smoothness via wavelet shrinkage [ J ]. Journal of the American Statistical Association, 1995, 90 (432) : 1200-1224.
  • 10Chipman H A, Kolaczyk E D, Mcculloch R E. Adaptive Bayesian wavelet shrinkage [ J ]. Joumal of the American Statistical Association, 1997, 92 (440) : 1413- 1421.

二级参考文献62

  • 1Wang, Y., Adali, T., Xuan, J.H., etal. Magnetic resonance image analysis by information theoretic criteria and stochasticsite models. IEEE Transactions on Information Technology in Biomedicine, 2001,5(2):150~158.
  • 2Choi, H.S., Haynor, D.R., Kim, Y. Partial volume tissue classification ofmultichannel magnetic resonance images -? a mixture model. IEEE Transactions on MedicalImaging, 1994,10(9):395~407.
  • 3Santago, P., Gage, H.D. Quantification of MR brain images by mixture density andpartial volume modeling. IEEE Transactions on Medical Imaging, 1993,12(9):566~574.
  • 4Wang, Y., Adali, T., Kung, S.Y., et al. Quantification and segmentation of braintissues from MR images. IEEE Transactions on Image Processing, 1998,7(8):1165~1181.
  • 5Zijdenbos, A.P., Dawant, B.M., Margolin, R.A., et al. Morphometric analysis ofwhite matter lesions in MR images: method and alidation. IEEE Transactions on ImageProcessing, 1994,13(9):716~724.
  • 6Li, S.Z. Markov random field modeling in image analysis. 2th ed., New York, BerlinHeidelberg: Springer-Verlag, 2000. 58~62.
  • 7Cline, H.E., Lorensen, W.E., Kikinis, R., et al. Three dimensional segmentation ofMR images of the head using probability and connectivity. Journal of Computer-AssistedTomography, 1990,14:1037~1045.
  • 8Liang, Z., MacFall, J.R., Harrington, D.P. Parameter estimation and tissuesegmentation from multispectral MR images. IEEE Transactions on Medical Imaging,1994,13(9):441~449.
  • 9Ueda, N., Nakano, R. Deterministic annealing EM algorithm. Neural Networks,1998,11:271~282.
  • 10Dempster, A.P., Laird, N.M., Rubin, D.B. Maximum-Likelihood from incomplete datavia the EM algorithm. Journal of the Royal Statistical Society, 1997,B(39):1~38.

共引文献74

同被引文献64

  • 1李建桥,张晓冬,邹猛,李豪,王洋,石睿杨.中华绒螯蟹平面运动三维观测和步态分析[J].农业机械学报,2012,43(S1):335-338. 被引量:8
  • 2陈祖爵,陈潇君,何鸿.基于改进的混合高斯模型的运动目标检测[J].中国图象图形学报,2007,12(9):1585-1589. 被引量:37
  • 3YANG X H,SUI J H, MENG B,et al. Auto-generating uni- form stochastic Web images for ink-jet printing textiles[J ]. Textile Research Journal, 2010,80(18) : 1942-1948.
  • 4CHEN C W, LUO J, PARKER K J. Image segmentation via adaptive k-mean clustering and knowledge-based morpho- logical operations with biomedical applications [J]. IEEE Transactions on Image Processing, 1998, 7 (12) : 1673-1683.
  • 5王福友,袁赣南,卢志忠,郝燕玲.X波段导航雷达浪高实时测量研究[J].海洋工程,2007,25(4):84-87. 被引量:21
  • 6Alex S, Christoph B, Thomas K, et al. EM-TV methods for iverse problems with Poisson noise[J]. Level Set and PDE based reconstruction methods in imaging, 2013, 2090(8) :71-142.
  • 7Landi G, Piecolomini E L NPTooI: a matlab software for non- negative image restoration with Newton projection methods [ J]. Numerical Algorithm, 2013, 62 (3) :487-504.
  • 8Beck A, Teboulle M. A fast dual proximal gradient algorithm for convex minimization and applications [ J ]. Operations Research Letters, 2014, 42( 1 ) :1-6.
  • 9Bonettini S, Ruggiero V. An alternating extragradient method for total variation based image restoration from Poisson data [ J ]. In- verse Problems, 2011, 27(9) :1-28.
  • 10Hao Y, Xu J L An effective dual method for muhiplicative noise removal [ J]. Joumal of Visual Communication & Image Repre- sentation, 2014, 25(2): 306-312.

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部