期刊文献+

快速去块效应的线性规划方法

Fast image de-blocking by linear programming
原文传递
导出
摘要 许多现有的图像压缩算法在高压缩比下会产生恼人的块效应,消除块效应的后处理方法一直以来都是图像处理领域的重要研究方向。消除块效应可以认为是从不准确的采样数据出发,尽可能恢复原始图像,这也是压缩传感理论所做的。因此利用压缩传感理论,给出了一种新的去块效应方法,将去块效应问题归结为一个无需调校任何其他参数的线性规划问题,最终采用GPU实现,得以快速求解。大量的实验结果表明,该方法能快速有效地去除块效应,改善了图像的视觉效果,同时提高了图像的PSNR。 Compressed images may have block artifacts at low bit rates in many image compression algorithms. Postprocessing methods for image de-blocking are the most practical solution for removing block artifacts, since this does not require any changes to the existing standard codees. Image de-blocking can be considered as recovering the ground-truth image from inaccurate samples. It is exactly what compressive sensing does. According to this, we take advantage of compressive sensing theory to remove block artifacts. As a result, we convert the image de-blocking problem to a linear programming problem in which no parameters are required to be tuned. Finally, our approach can be performed fast using a GPU implementation. Our experiments show our approach can effectively remove block artifacts from compressed images, improving the visual quality and PSNR.
出处 《中国图象图形学报》 CSCD 北大核心 2012年第6期636-643,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(60873218 61003188) 国家重点基础研究发展计划(973)项目(2009CB320801) 浙江省自然科学基金重点项目(Z1080232) 浙江省科技厅项目(2009C03015 2010C33150) 浙江省教育厅项目(Y201119715)
关键词 去块效应 压缩传感理论 图形处理单元(GPU) 曲波变换 线性规划 block artifact reduction compressive sensing graphics processing unit (GPU) curvelet transform linear programming
  • 相关文献

参考文献24

  • 1Elad M. Optimized projections for compressed sensing[ J]. IEEE Transactions on Signal Processing 2007,55 ( 12 ) :5695-5702.
  • 2William H P, Saul A T, William T V, et al. Numerical Recipes : The Art of Scientific Computing, [ M ]. 3rd ed. Britain: Cambridge University Press, 2007.
  • 3Mallat S. A Wavelet Tour of Signal Processing: The Sparse Way [ M]. 3rd ed. America: Academic Press,2008.
  • 4Stephen B, Jerome B, Candes E. NESTA: a fast and accurate first-order method for sparse recovery [ R ]. California : California Institute of Technology, 2009.
  • 5Candes E, Wakin M. An introduction to compressive Sampling [ J ]. Signal Processing Magazine, IEEE ,2008 ,25 (2) :21-30.
  • 6赵永耀,秦志光.图像通信中去块效应方法研究现状[J].计算机工程与科学,2008,30(5):37-40. 被引量:4
  • 7Luo Y, Ward R K. Removing the blocking artifacts of blockbased DCT compressed images [ J ]. IEEE Transactions on Image Processing,2003,12 (7) : 838-842.
  • 8赵晨光,陈武凡.基于块间预测的图象块效应消除[J].中国图象图形学报(A辑),1999,4(8):627-630. 被引量:1
  • 9Yang Y, Galatsanos N P, Katsaggelos A K. Regularized reconstruction to reduce blocking artifacts of block discrete cosine transform compressed images [ J ]. IEEE Transactions on Circuits and Systems for Video Technology, 1993, 3 (6) : 421-432.
  • 10Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Transactions on Information Theory, 2006,52(2) : 489-509.

二级参考文献28

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部