期刊文献+

多水平外区抑制的轮廓检测 被引量:2

Contour detection based on multilevel inhibition
原文传递
导出
摘要 提取自然图像中的物体轮廓是机器视觉研究的重要问题,主要困难在于自然图像中的纹理性边缘严重干扰了物体轮廓的提取。研究表明视皮层方位选择性神经元的非经典感受野机制使得人类视觉系统在处理自然图像时不仅能够抑制纹理性边缘,而且能够增强物体的轮廓。基于此人们提出多种仿生轮廓检测算法,但算法中被称为抑制水平的参量在取值较高时会漏检部分轮廓,而在其取值较低时又会引入过多的纹理性边缘。针对这一问题,提出多水平外区抑制轮廓检测算法,通过整合各级单水平外区抑制的检测信息,有效抑制了纹理性边缘和降低了漏检轮廓的可能性。实验结果表明,相对于传统算法,新算法在轮廓检测性能上提高了10%左右,并具有更好的稳健性。 Detecting object contours from natural images plays an important role in machine vision. However, because of the texture edges existing in natural images, it becomes very hard to implement. Relevant research on orientation selective neurons in the primary visual cortex shows, that a mechanism, called non-classical receptive field, can inhibit texture edges and facilitate isolated edges when the visual system processes natural images. Many biologically motivated models have been proposed for contour detection, but they share a common problem which is that some contour elements will be lost if the value of inhibition level is set to high, while some texture edges will be retained if it is set to low. In order to solve this problem, we present a new model, which combines the information from different inhibition levels. It effectively suppresses texture edges and reduces the possibility of losing contour elements. Experimental results show that in comparison with the traditional algorithms, the new algorithm increases performance about ten percent and is more robust.
作者 闫超 张建州
出处 《中国图象图形学报》 CSCD 北大核心 2012年第6期664-670,共7页 Journal of Image and Graphics
关键词 轮廓检测 纹理性边缘 非经典感受野 多水平抑制 contour detection texture edge non-classical receptive field multilevel inhibition
  • 相关文献

参考文献15

  • 1Kovesi P. Image features from phase congruency [ J ]. Journal of Computer Vision Research, 1999, 1(3): 1-26.
  • 2Kass M, Witkin A, Terzopoulos D. Snakes: active contour models [ J ]. International Journal of Computer Vision, 1987, 1(4) : 321-331.
  • 3Parent P, Zucker S W. Trace inference, curvature consistency, and curve detection [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11 (8):823-839.
  • 4Li Y, Zhang J Z, Jiang P. Contour extraction based on surround inhibition and contour grouping [ C ]//Proceedings in ACCV 2009. Berlin, HeideLberg:Springer-Verlag, 2010 : 687-696.
  • 5Knierim J J, Van Essen D C. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey [ J]. J. Neurophysiol, 1992, 67 (4) : 961-980.
  • 6Nothdurft H C, Gallant J, Van Essen D C. Response modul.ation by texture surround in primate area Vl : Correlates of " popout" under anesthesia [ J ]. Visual Neuroscience, 1999, 16 (1): 15-34.
  • 7Grigorescu C, Petkov N, Westenberg M A. Contour detection based on nonclassical receptive field inhibition [ J ]. IEEE Transactions on Image Processing, 2003, 12(7) : 729-739.
  • 8Grigorescu C, Petkov N ,Westenberg M A. Contour and boundary detection improved by surround suppression of texture edges [ J]. image and Vision Computing, 2004, 22 (8) : 609-622.
  • 9Canny J. A computational approach to edge detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelhgence, 1986, 8(6): 679-698.
  • 10桑农,唐奇伶,张天序.基于初级视皮层抑制的轮廓检测方法[J].红外与毫米波学报,2007,26(1):47-51. 被引量:30

二级参考文献13

  • 1常洪花,张建奇,李勇.背景杂波对经典人眼目标获取性能模型的修正[J].红外与毫米波学报,2005,24(6):450-454. 被引量:4
  • 2寿天德,周逸峰.视觉系统皮层下细胞的方位和方向敏感性[J].生理学报,1996,48(2):105-112. 被引量:11
  • 3吴宏刚,李晓峰,陈跃斌,李在铭.空时自适应杂波分类抑制与弱小运动目标检测[J].红外与毫米波学报,2006,25(4):301-305. 被引量:9
  • 4桑农,唐奇伶,张天序.基于初级视皮层抑制的轮廓检测方法[J].红外与毫米波学报,2007,26(1):47-51. 被引量:30
  • 5Dragoi V, Sur M. Dynamic properties of recurrent inhibition in primary visual cortex: contrast and orientation dependence of contextual effects [J]. J. Neurophysiol. , 2000, 83(2) :1019-1030.
  • 6Grigorescu C, Petkov N, Westenberg M A. Contour detection based on nonclassical receptive field inhibition [ J ]. IEEE Trans. IP, 2003, 12 (7) : 729-739.
  • 7Jain A K, Farrokhnia F. Unsupervised texture segmentation using Gabor filters [ J ]. Pattern Recognition, 1991, 2,4 (12) : 1167-1186.
  • 8Knierim J J, van Essen C. Neuronal responses to static texture patterns in area V1 of the alert macaque monkeys [J].J. Neurophysiol. , 1992, 67(4) : 961-980.
  • 9Kapadia M K, Westheimer G, Gilbert C D. Spatial distribution of contextual interactions in primary visual cortex and in visual perception [ J ]. J. Neurophysiol. , 2000, 84 (4) : 2048-2062.
  • 10Canny J F. A computational approach to edge detection [J]. IEEE Trans. PAMI, 1986, 8(6): 679-698.

共引文献36

同被引文献16

  • 1LEORDEANU M, SUKTHANKAR R, SMINCHISESCU C. Generalized boundaries from multiple image interpretations[J]. Pattern Analysis and Machine, 2014, 36(7): 1312-1324.
  • 2LUI L M, ZENG Wei, YAU S T, et al. Shape analysis of planar multiply-connected objects using conformal welding[J]. Pattern Analysis and Machine, 2014, 36(7): 1384-1401.
  • 3LIM D H, JANG S J. Comparison of two-sample tests for edge detection in noisy images[J]. Journal of the Royal Statistical Society, 2002, 51(1): 21-30.
  • 4MARTIN D R, FOWLKES C, MALIK J. Learning to detect natural image boundaries using local brightness, color, and texture cues[J]. Pattern Analysis and Machine Intelligence, 2004, 26(5): 530-549.
  • 5LI H, YEZZI A J. Local or global minima: Flexible dualfront active contours[J]. Pattern Analysis and Machine Intelligence, 2007, 29(1): 1-14.
  • 6GRIGORESCU C, PETKOV N, WESTENBERG M A. Contour detection based on nonclassical receptive field inhibition[J]. Image Processing, 2003, 12(7): 729-739.
  • 7PAPARI G, CAMPISI P, PETKOV N, et al. A biologically motivated multiresolution approach to contour detection[J]. Journal on Advances in Signal Processing, 2007(1), doi: 10.1155/2007/71828.
  • 8PAPARI G, CAMPISI P, PETKOV N. Contour detection by multiresolution surround inhibition[C]//IEEE International Conference on Image Processing. Atlanta GA, USA: IEEE, 2006: 749-752.
  • 9PAPARI G, PETKOV N. An improved model for surround suppression by steerable filters and multilevel inhibition with application to contour detection[J]. Pattern Recognition, 2010, 44(9): doi:10.1016/j.patcog.2010.08. 013.
  • 10PAPARI G, CAMPISI P, PETKOV N. New families of fourier eigenfunctions for steerable filtering[J]. IEEE Transactions on Image Processing, 2012, 21(6): 2931-2943.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部