期刊文献+

基于支持向量机和振动场的故障诊断方法

Fault Diagnosis Based on Support Vector Machines and Vibration Field
下载PDF
导出
摘要 故障样本量是制约智能故障诊断发展的关键因素之一,然而实践中往往难以获取充足的故障样本。支持向量机是一种新型的机器学习和模式识别方法,在解决小样本、非线性及高维模式识别问题中表现出优越的性能。本文将欧氏距离分类引入到支持向量机解决支持向量机多类分类问题,提出了基于支持向量机和振动场的故障诊断方法。实验结果表明,该方法在故障诊断上计算速度和准确度令人满意,为类似的研究提供了借鉴意义和参考。 The Shortage of fault samples is one of the main reasons that restrict the development of intelligent, but in practice it is often difficult to obtain sufficient fault samples. Support vector machine is a new type of machine learning and pattern recognition methods, in addressing the small sample, nonlinear and high dimensionalpattern recognition problems showed superior performance. This article will introduce to the Euclidean distance classifier support vector machine to solve multi-class support vector machineclassification is proposed based on support vector machines andmechanical vibration fault diagnosis field. Experimental resultsshow that the method in machinery fault diagnosis on computing speed and accuracy is satisfactory for a similar study providesreference and reference.
作者 陆冠成
出处 《中国新通信》 2012年第8期87-90,共4页 China New Telecommunications
关键词 支持向量机 模式识别 智能故障诊断 support vector machines, pattern recognition, intelligent fault diagnosis
  • 相关文献

参考文献5

  • 1齐保林,李凌均.基于支持向量机的故障诊断方法研究[J].煤矿机械,2007,28(1):182-184. 被引量:12
  • 2C.J.C.Burges,A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery,Vol.2, pp. 121 - 167.1998.
  • 3Bottou L, Cortes C, Denker J et al.Comparison of classifier methods: A case study in handwritten digit recognition. In: Proc of the International Conference on Pattern Recognition, 1994:77-87.
  • 4马笑潇,黄席樾,柴毅.基于SVM的二叉树多类分类算法及其在故障诊断中的应用[J].控制与决策,2003,18(3):272-276. 被引量:78
  • 5TOTH D,AACH T. Improved minimum distance classification with Gaussian outlier detection for industrial inspection [A]. Italy,11th International Conference on Image Analysis and Processing Palermo[C], 2001. 584-588.

二级参考文献8

  • 1耿遵敏,宋孔杰,李兆前,张兴华,万德玉.关于柴油机振声特点及动态诊断方法的研究与讨论[J].内燃机学报,1995,13(2):140-147. 被引量:32
  • 2马笑潇.智能故障诊断中的机器学习新理论及其应用[D].重庆:重庆大学,2002.
  • 3Vapnic 张学工 译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 4Vladimir N.V著.许建华,张学工译.统计学习理论[M].北京:电子工业出版社,2004.
  • 5Vladimir N, Vapnik. The Nature of Statistical Learning Theory(2nd Edition)[M/CD]. New York: Spring- Verlag, 1999.
  • 6Nello Cristanini, John Shawe- Taylor. An Introduction to Support Vector Machines and Other Kernel- Based Leaming Methods[ M].北京:机械工业出版社,2005.
  • 7Andrew R.Webb.统计模式识别2版[M].王萍,杨培龙,罗颖昕,译.北京:电子工业出版社,2004.
  • 8李凌均,张周锁,何正嘉.基于支持向量机的机械故障智能分类研究[J].小型微型计算机系统,2004,25(4):667-670. 被引量:13

共引文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部