期刊文献+

Differentiation of white and red thrombus with magnetic resonance imaging: a phantom study 被引量:2

Differentiation of white and red thrombus with magnetic resonance imaging: a phantom study
原文传递
导出
摘要 Background An early identification of the composition of arterial thrombus may have diagnostic, therapeutic, and prognostic implications. The variation of magnetic resonance (MR) signal intensity between white and red thrombi, especially in the susceptibility sensitive MR sequence, remains unknown. Our research was to evaluate the feasibility of MRI in differentiating of white and red thrombi with a phantom study. Methods A total of 12 red and 12 white thrombi were prepared with the venous blood. Examination of the phantom was completed using a 3.0T MR unit, including fluid attenuated inversion recovery (FLAIR) T1, T2-weighted imaging (T2WI), FLAIR T2, T2* gradient echo (T2*GRE) imaging, and susceptibility weighted angiography sequences (SWAN). MR signal intensity patterns of the thrombi were objectively classified as hyperintensity, isointensity and hypointensity, compared with the background agar. The volume of thrombus was calculated and correlated with its signal intensity. Results For white thrombi, 11/12 clots showed hyperintensity and 1/12 showed isointensity in FLAIR T1 images. In T2WI, 6/12 clots showed hyperintensity, 3/12 isointensity, and 3/12 hypointensity. In FLAIR T2, 8/12 clots showed hyperintensity and 4/12 showed isointensity. In T2*GRE, 3/12 clots showed hyperintensity and the remaining 9/12 clots showed isointensity. In SWAN, 5/12 clots demonstrated hyperintensity and 7/12 isointensity. For the red thrombus, 12/12 clots demonstrated hyperintensity in FLAIR T1, T2WI, and FLAIR T2 sequences. In T2*GRE and SWAN sequences, 3/12 clots displayed hypointensity and the remaining 9/12 clots showed slight hyperintensity. Thrombi with hypointensity displayed in T2*GRE and SWAN sequences were significantly larger than those with hyperintensity. Conclusions Differentiation of white and red thrombi with conventional MR sequence is unreliable, because both kinds of thrombi do not possess unique signal intensity features in these sequences. Red thrombus may or may not show hypointensity in the susceptibility sensitive MR sequences, depending on its size and time course. Background An early identification of the composition of arterial thrombus may have diagnostic, therapeutic, and prognostic implications. The variation of magnetic resonance (MR) signal intensity between white and red thrombi, especially in the susceptibility sensitive MR sequence, remains unknown. Our research was to evaluate the feasibility of MRI in differentiating of white and red thrombi with a phantom study. Methods A total of 12 red and 12 white thrombi were prepared with the venous blood. Examination of the phantom was completed using a 3.0T MR unit, including fluid attenuated inversion recovery (FLAIR) T1, T2-weighted imaging (T2WI), FLAIR T2, T2* gradient echo (T2*GRE) imaging, and susceptibility weighted angiography sequences (SWAN). MR signal intensity patterns of the thrombi were objectively classified as hyperintensity, isointensity and hypointensity, compared with the background agar. The volume of thrombus was calculated and correlated with its signal intensity. Results For white thrombi, 11/12 clots showed hyperintensity and 1/12 showed isointensity in FLAIR T1 images. In T2WI, 6/12 clots showed hyperintensity, 3/12 isointensity, and 3/12 hypointensity. In FLAIR T2, 8/12 clots showed hyperintensity and 4/12 showed isointensity. In T2*GRE, 3/12 clots showed hyperintensity and the remaining 9/12 clots showed isointensity. In SWAN, 5/12 clots demonstrated hyperintensity and 7/12 isointensity. For the red thrombus, 12/12 clots demonstrated hyperintensity in FLAIR T1, T2WI, and FLAIR T2 sequences. In T2*GRE and SWAN sequences, 3/12 clots displayed hypointensity and the remaining 9/12 clots showed slight hyperintensity. Thrombi with hypointensity displayed in T2*GRE and SWAN sequences were significantly larger than those with hyperintensity. Conclusions Differentiation of white and red thrombi with conventional MR sequence is unreliable, because both kinds of thrombi do not possess unique signal intensity features in these sequences. Red thrombus may or may not show hypointensity in the susceptibility sensitive MR sequences, depending on its size and time course.
出处 《Chinese Medical Journal》 SCIE CAS CSCD 2012年第11期1889-1892,共4页 中华医学杂志(英文版)
关键词 THROMBUS magnetic resonance imaging phantom study susceptibility weighted imaging thrombus magnetic resonance imaging, phantom study susceptibility weighted imaging
  • 相关文献

参考文献18

  • 1Kim HS, Lee DH, Choi CG, Kim S J, Suh DC. Progression of middle cerebral artery susceptibility sign on T2*-weighted images: its effect on recanalization and clinical outcome after thrombolysis. AJR Am J Roentgenol 2006; 187: W650-W657.
  • 2Csoboth I, Matyus A, Gabara K, Boncz I. Time of taking aspirin can have an effect on the frequency of occurrence of stroke. Chin Med J 2009; 122: 1119.
  • 3Kirchhof K, Welzel T, Mecke C, Zoubaa S, Sartor K. Differentiation of white, mixed, and red thrombi: value of CT in estimation of the prognosis of thrombolysis phantom study. Radiology 2003; 228: 126-130.
  • 4Idbaih A, Boukobza M, Crassard I, Porcher R, Bousser MG, Chabriat H. MRI of clot in cerebral venous thrombosis: high diagnostic value of susceptibility-weighted images. Stroke 2006; 37: 991-995.
  • 5Schellinger PD, Chalela JA, Kang DW, Latour LL, Warach S. Diagnostic and prognostic value of early MR Imaging vessel signs in hyperacute stroke patients imaged <3 hours and treated with recombinant tissue plasminogen activator. AJNR Am J Neuroradiol 2005; 26: 618-624.
  • 6Saito S, Takahashi M, Nonoguchi N, Ohta T, Takahashi JA, Matsumoto S. An advantage of T2*-weighted MRI for early detection of straight sinus thrombosis: a case report. Rinsho Shinkeigaku 2009; 49: 646-650.
  • 7Leach JL, Strub WM, Gaskill-Shipley MF. Cerebral venousthrombus signal intensity and susceptibility effects on gradient recalled-echo MR imaging. AJNR Am J Neuroradiol 2007; 28: 940-945.
  • 8Liebeskind DS, Sanossian N, Yong WH, Starkman S, Tsang MP, Moya AL, et al. CT and MRI early vessel signs reflect clot composition in acute stroke. Stroke 2011; 42: 1237-1243.
  • 9Rapoport S, Sostman HD, Pope C, Camputaro CM, Holcomb W, Gore JC. Venous clots: evaluation with MR imaging. Radiology 1987; 162: 527-530.
  • 10Boukobza M, Crassard I, Bousser MG, Chabriat H. MR imaging features of isolated cortical vein thrombosis: diagnosis and follow-up. AJNR Am J Neuroradiol 2009; 30: 344-348.

同被引文献9

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部