期刊文献+

Effect of c-Jun NH2-terminal kinase-mediated p53 expression on neuron autophagy following traumatic brain injury in rats 被引量:3

Effect of c-Jun NH2-terminal kinase-mediated p53 expression on neuron autophagy following traumatic brain injury in rats
原文传递
导出
摘要 Background Activation of c-Jun NH2-terminal kinase (JNK) has been implicated in neuron apoptosis as well as autophagy in response to various stressors after traumatic brain injury (TBI). However, the underlying molecular pathway remains unclear. Our study assessed whether JNK-mediated p53 phosphorylation might be an important mechanism for enhancing neuron autophagy in response to TBI. Methods A total of 186 male Sprague-Dawley (SD) rats (300-350 g) were used in this study. By randomized block method rats were randomly divided into four groups: sham-operated (n=46), TBI (n=60), TBI + dimethyl sulfoxide (DMSO) (n=40), and TBI + SP600125 (n=40). JNK was treated with SP600125, a specific JNK inhibitor. JNK, p-P53, Beclin-1, damage-regulated autophagy modulator (DRAM) and p-bcl-2 were evaluated by Western blotting analysis. The cellular localization and expression of Beclin-1 and DRAM was observed by immunofluorescence and immunohistochemistry, and the expression of Beclin-l-Bcl-2/Bcl-xL complexes was evaluated by immunoprecipitation. Multiple-group comparisons were conducted using analysis of variance (ANOVA). P values of less than 0.05 were considered statistically significant. Results It was observed that the expression of JNK, p-P53, Beclin-1, DRAM and p-bcl-2 was increasing after TBI, and the expression of Beclin-1 and DRAM was mainly located in the cytoplasm of neurons. But these were significantly inhibited in SP600125 group compared with sham group and TBI+SP600125 group (P 〈0.05). The expression of Beclin-l-Bcl-2/Bcl-xL complexes was reduced after TBI. Conclusion JNK-mediated p53 phosphorylation might be an important mechanism for enhancing neuron autophagy in response to TBI. Background Activation of c-Jun NH2-terminal kinase (JNK) has been implicated in neuron apoptosis as well as autophagy in response to various stressors after traumatic brain injury (TBI). However, the underlying molecular pathway remains unclear. Our study assessed whether JNK-mediated p53 phosphorylation might be an important mechanism for enhancing neuron autophagy in response to TBI. Methods A total of 186 male Sprague-Dawley (SD) rats (300-350 g) were used in this study. By randomized block method rats were randomly divided into four groups: sham-operated (n=46), TBI (n=60), TBI + dimethyl sulfoxide (DMSO) (n=40), and TBI + SP600125 (n=40). JNK was treated with SP600125, a specific JNK inhibitor. JNK, p-P53, Beclin-1, damage-regulated autophagy modulator (DRAM) and p-bcl-2 were evaluated by Western blotting analysis. The cellular localization and expression of Beclin-1 and DRAM was observed by immunofluorescence and immunohistochemistry, and the expression of Beclin-l-Bcl-2/Bcl-xL complexes was evaluated by immunoprecipitation. Multiple-group comparisons were conducted using analysis of variance (ANOVA). P values of less than 0.05 were considered statistically significant. Results It was observed that the expression of JNK, p-P53, Beclin-1, DRAM and p-bcl-2 was increasing after TBI, and the expression of Beclin-1 and DRAM was mainly located in the cytoplasm of neurons. But these were significantly inhibited in SP600125 group compared with sham group and TBI+SP600125 group (P 〈0.05). The expression of Beclin-l-Bcl-2/Bcl-xL complexes was reduced after TBI. Conclusion JNK-mediated p53 phosphorylation might be an important mechanism for enhancing neuron autophagy in response to TBI.
出处 《Chinese Medical Journal》 SCIE CAS CSCD 2012年第11期2019-2024,共6页 中华医学杂志(英文版)
基金 This work was supported by a grant from Hebei Province Natural Science Foundation (No. C2009001247). The authors declare that there are no conflicts of interest.Acknowledgments: We thank Dr. CUI Jian-zhong and Dr. GAO Jun-ling for their help and generous gift of antibodies for Western blotting.
关键词 brain injuries autophagy c-Jun NH2-terminal kinase P53 damage-regulated autophagy modulator brain injuries, autophagy c-Jun NH2-terminal kinase p53 damage-regulated autophagy modulator
  • 相关文献

参考文献29

  • 1Neely AN, Mortimore GE. Localization of products of endogenous proteolysis in lysosomes of perfused rat liver. Biochem Biophys Res Commun 1974; 59: 680-687.
  • 2Seglen PO, Gordon PB. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci U S A 1982; 79: 1889-1892.
  • 3Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 2004; 6: 463-477.
  • 4Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin-1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A2003; 100: 15077-15082.
  • 5Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006; 441: 880-884.
  • 6Wang Q J, Ding Y, Kohtz DS, Mizushima N, Cristea IM, Rout MP, et al. Induction of autophagy in axonal dystrophy and degeneration. J Neurosci 2006; 26: 8057-8068.
  • 7Li DD, Wang LL, Deng R, Tang J, Shen Y, Guo JF, et al. The pivotal role of c-JunNH2-terminal kinase mediated Beclin- 1 expression during anticancer agents-induced autophagy in cancer cells. Oncogene 2009; 28: 886-898.
  • 8Zhang QG, Wang RM, Yin XH. Knock-down of POSH expression is neuroprotective through down-regulating activation of the MLK3-MKK4-JNK pathway following cerebral ischemia in the rat hippocampal CA1 subfield. J Neurochem 2005; 95: 784-795.
  • 9Lai Y, Hickey RW, Chen Y, Bayir H, Sullivan ML, Chu CT, et al. Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant y-glutamylcysteinyl ethylester. J Cereb Blood Flow Metab 2008; 28: 540-550.
  • 10Kang R, Zeh HJ, Lotze MT, Tang D. The Beclin-1 network regulates autophagy and apoptosis. Cell Death Differ 2011; 18: 571-580.

同被引文献12

引证文献3

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部