期刊文献+

j不变量等于1728的GLS椭圆曲线上四维GLV方法

4-dimensional GLV method on GLS elliptic curves with j-invariant 1728
下载PDF
导出
摘要 为了实现椭圆曲线的快速倍乘,Gallant-Lamber-Vanstone(GLV)方法被推广到四维的一般情形。文章中回答了Galbraith,Lin和Scott(J.Cryptol.DOI:10.1007/s00145-010-9065-y)提出的一个公开问题:研究Fp2上j不变量等于1728的GLS椭圆曲线上的四维GLV方法,并给出时间周期。尤其指出GLV的四维分解能够在很大的概率上实现,给出了一些结果和例子。特别指出在同一类曲线上,四维GLV方法的时间周期大概是二维GLV方法的70%~73%。 In order to obtain a fast multiplication on elliptic curves,the Gallant-Lambert-Vanstone(GLV) method is introduced to the general situation in dimension 4,one of the open problems in Galbraith,Lin and Scott's work(J.Cryptol.DOI:10.1007 /s00145-010-9065-y) is answered,that is,studying the performance of 4-dimensional GLV method for faster point multiplication on some GLS curves over Fp2 with j-invariant 1728.Finally some results and examples are presented,showing that the 4-dimensional GLV method runs in between 70% and 73% the time of the 2-dimensional GLV method which Galbraith et al.did in their work.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2012年第2期25-28,共4页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(10990011)
关键词 椭圆曲线 点的倍乘 GLV方法 elliptic curve point multiplication GLV method
  • 相关文献

参考文献10

  • 1Gallant R P, Lambert R J, Vanstone S A. Faster point multiplication on elliptic curves with efficient endomorphisms, [C ]// Proc of CRYPTO 2001, LNCS 2139, Springer, Heidelberg, 2001 : 190 - 200.
  • 2Park Y H, Jeong S, Kim C H, et al. An alternate decomposition of an integer for faster ponit multiplication on certain elliptic curves[ C]// Proc of PKC 2002, LNCS 2274, Springer, Heidelberg, 2001:323 -334.
  • 3Sica F, Ciet M, Quisquater J J. Analysis of gallant-lambert- vanstone method based on efficient endomophisms: elliptic and hyperelliptic curves. [ C]// Proc of SAC 2002, LINICS 2595, Springer, Heidelberg, 2003:21 -36.
  • 4Iijma T, Matsuo K, Chao J, et al. Construction of frobenius maps of twist elliptic curves and its application to elliptic scalar multiplication. [ C ]// Proc of SCIS 2002, IEICE, Japan,2002:699 - 702.
  • 5Galbraith S D, Lin X B, Scott M. Endomorphisms for faster elliptic curve cryptogrpahy on a large class of curves. [ C ]// Proc of EUROCRYPT 2009, LNCS 5479, Springer, Heidelberg, 2009:518 - 535.
  • 6Zhou Z H, Hu Z, Xu M Z, et al. Efficient 3-dimensional GLV method for faster point multiplication on some GLS elliptic curves [ J ]. Information Processing Letters, 2010, 110:1003 -1006.
  • 7Cohen H. A course in computational algebraic number theory[M]. Springer-Verlag, 1996.
  • 8Hankerson D, Menezes A J, Vanstone S. Guide to elliptic curve cryptography[ M ]. Springer, Heidelberg, 2004.
  • 9Ireland K, Rosen M. A classical introduction to modem number theory [ M ]. 2nd ed. GTM, Springer, New York, 1990.
  • 10Galbraith S D, Lin X B, Scott M. Endomorphisms for faster elliptic curve cryptogrpahy on a large class of curves [ J ]. J. Cryptol,2010.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部