期刊文献+

基于学习的人脸图像超分辨率重构算法 被引量:3

Face Image Super-Resolution Reconstruction Based on Learning
下载PDF
导出
摘要 提出了一种新的基于学习的人脸图像超分辨率重构算法,利用高分辨率图像和低分辨率图像的拓扑结构相似性,将现有的低分辨率人脸图像在低分辨率人脸图像字典中展开,在保持系数不变的同时将字典换为高分辨率人脸图像字典,最终得到待重构的高分辨率人脸图像.在系数估计时,使用主成分分析的方法,同时加入了最小全变分作为约束,算法充分利用了不同人脸图像之间的相似性和人脸图像本身的内部相关性.实验结果表明,结果既保持了对原有图像的忠实性,又比较适合人眼观察. A learning based super-resolution algorithm for reconstructing face image was proposed.Considering that the similarity of the structures between high resolution(HR) image and corresponding low resolution(LR) image when unfolded on the platform of image library,the input LR image on the built face dictionary for reconstruction was decomposed.Then,the face dictionary of LR images is replaced by corresponding one of HR images with same coefficients.In the coefficients evaluation step,the principal component analysis(PCA) method is used and the total variation(TV) is added as the constraint.The experiment results show that the proposed algorithm could well preserve the faith to the original image and the reconstructed face image is more suitable to be observed by human eyes.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2012年第4期386-389,共4页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(60772066)
关键词 人脸图像超分辨率 主成分分析 全变分 约束 image super-resolution reconstruction principal component analysis(PCA) total variation constrain
  • 相关文献

参考文献7

  • 1Freeman W T, Pasztor E C, Carmichael O T. Example- based super-resolution I-J]. IEEE Computer Graphics and Applications, 2002,22 (2) .. 56 - 65.
  • 2Baker S, Kanada T. Hallucinating faces [- C 3 ff Proceedings of IEEE International Conference. Grenoble, France:Es. n. 1, 2000..83-88.
  • 3Liu C, Shum H, Zhang C. A two-step approach to hal- lucinating faces., global parametric model and local non- parametric model[C]//Proceedings of IEEE Int Conf on Computer Vision and Pattern Recognition (CVPR). Hawaii, USA.. Is. n. ], 2001 ..192 - 198.
  • 4Wang Xiaogang, Tang Xiaoou. Hallucinating face by Eigen-transformation[C] // Proceedings of IEEE JNL, Systems, Man, and Cubernetics. Hawaii, USA.-Is. n. ], 2005..425 -434.
  • 5Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transaction on Information Theory,2006,52(2):489 - 509.
  • 6Donoho D L. Compressed sensing [ J ]. IEEE Transaction on Information Theory, 2006, 52 (4) : 1289 - 1306.
  • 7Cambridge University Computer Laboratory. The ORL database of faces FEB/OLd. F2006-09-01. http: // www. cl. cam. ac. uk/research/dtg/attarchive/ facedatabase, html.

同被引文献34

  • 1浦剑,张军平,黄华.超分辨率算法研究综述[J].山东大学学报(工学版),2009,39(1):27-32. 被引量:35
  • 2孔英会,张少明.多级FFD配准视频人脸超分辨率重建[J].光电丁程.2012,39(10):46-53.
  • 3Baker S, Kanade T. Limits on Super-resolution and How to Break Them [J ]. Computer Vision and Pattern Recognition, 2000, 9(2):372-379.
  • 4Hertzmann A, Jacobs CE, Oliver N, et al. Image analogies[C] //Proceedings of Computer Graphics, Annual Conferences Series, ACMSIGGTAPH. Los Angeles, Califomia:[ s.n ], 2001:327-340.
  • 5Freeman WT, Jones TR, Pasztor EC. Example-Based super-resolution [J]. IEEE Computer Graphics and Applications, 2O02,22(2):56-65.
  • 6Baker S, Kanade T. Hallucinating Faces [ C ]//Proceedings of the 4th IEEE International Conference on Automatic Face and Gesture Recogmition. Grenoble, France:[ s.n. ], 2000:83-88.
  • 7Liu Ce, Shum HY, Zhang Chang, shun. A Two-step Approach to Hallucinating Faces: Global Parametric Model and Local Nonparametric Model [C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai Marriott, Hawaii: [ s.n. ], 2001 : 192-198.
  • 8Samaria F, Hatter A. Parameterisation of a Stochastic Model for Human Face Identification. In: IEEE Workshop on Applications of Computer Vision; 1994. p. 138-142.
  • 9Kang M,Chaudhuri S. Super-resolution image reconstruc-tion[J].{H}IEEE Signal Processing Magazine,2003,(03):19-20.
  • 10S Farsiu,D Robinson,M Elad. Advanced and chal-lenges in super-resolution[J].International Journal of Im-age System and Technology,2004,(02):47-57.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部