摘要
针对一类基于Roesser模型状态和输入滞后的二维离散不确定非线性系统,研究了其非脆弱鲁棒保代价控制问题。系统的非线性部分满足广义Lipschitze条件,不确定性部分是范数有界的。采用Lyapunov方法分析了无不确定性和控制输入时该类系统的稳定性和代价性能,设计了非脆弱滞后状态反馈控制器,使得闭环系统渐近稳定,给出了带有滞后的代价函数和代价性能上界。所得结果为滞后非依赖的线性矩阵不等式形式。算例说明了该判据的有效性。
The non-fragile robust guaranteed cost control problem of the 2-D discrete uncertain nonlinear systems described by the Roesser model with the state and input delays is studied.The nonlinear element of systems satisfies the generalized Lipschitze condition and the parameter uncertainty is assumed to be norm-bounded.By using the Lyapunov method,the stability and the cost function for the systems without uncertainty and control input are analysed.A non-fragile delayed-state feedback controller is design to make the closed-loop system asymptotically stable.The cost function with shift-delays and its upper bound is given.All the results are delay-independent and expressed in terms of the linear matrix inequlities.An example is given to show the effectiveness of present criteria.
出处
《南京理工大学学报》
EI
CAS
CSCD
北大核心
2012年第2期285-290,共6页
Journal of Nanjing University of Science and Technology
基金
国家自然科学基金(61074006
60874007)
教育部高等学校博士点基金(20070288055
200802880024)
关键词
2-D离散系统
保代价控制
滞后
稳定性
非脆弱控制器
2-D discrete systems
guaranteed cost control
shift-delay
stability
non-fragile controller