期刊文献+

一类2-D离散滞后系统的非脆弱保代价控制

Non-fragile Guaranteed Cost Control for Class of 2-D Discrete Systems with Shift-delays
下载PDF
导出
摘要 针对一类基于Roesser模型状态和输入滞后的二维离散不确定非线性系统,研究了其非脆弱鲁棒保代价控制问题。系统的非线性部分满足广义Lipschitze条件,不确定性部分是范数有界的。采用Lyapunov方法分析了无不确定性和控制输入时该类系统的稳定性和代价性能,设计了非脆弱滞后状态反馈控制器,使得闭环系统渐近稳定,给出了带有滞后的代价函数和代价性能上界。所得结果为滞后非依赖的线性矩阵不等式形式。算例说明了该判据的有效性。 The non-fragile robust guaranteed cost control problem of the 2-D discrete uncertain nonlinear systems described by the Roesser model with the state and input delays is studied.The nonlinear element of systems satisfies the generalized Lipschitze condition and the parameter uncertainty is assumed to be norm-bounded.By using the Lyapunov method,the stability and the cost function for the systems without uncertainty and control input are analysed.A non-fragile delayed-state feedback controller is design to make the closed-loop system asymptotically stable.The cost function with shift-delays and its upper bound is given.All the results are delay-independent and expressed in terms of the linear matrix inequlities.An example is given to show the effectiveness of present criteria.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2012年第2期285-290,共6页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(61074006 60874007) 教育部高等学校博士点基金(20070288055 200802880024)
关键词 2-D离散系统 保代价控制 滞后 稳定性 非脆弱控制器 2-D discrete systems guaranteed cost control shift-delay stability non-fragile controller
  • 相关文献

参考文献15

  • 1Kaczorek T. Two-dimensional linear systems [ M ]. New York : Springer-Verlag, 1984.
  • 2Roesser R P. A discrete state-space model for linear image processing[ J]. IEEE Transactions on Automatic Control, 1975,20 ( 1 ) : 1 -10.
  • 3Givone D D, Roesser R P. Multidimensional linear itera- tire circuits-general properties [ J ]. IEEE Transactions on Computers, 1972,C-21 (10) : 1067-1073.
  • 4Dhawan A, Kar H. An LMI approach to robust optimal guaranteed cost control of 2-D discrete systems described by the Roesser model [ J ]. Signal Processing, 2010,90:2648-2654.
  • 5盛梅,王为群,邹云.一类不确定非线性2-D Markovian跳跃系统的鲁棒随机镇定[J].南京理工大学学报,2008,32(2):205-208. 被引量:1
  • 6Xu Huiling, Zou Yun, Xu Shengyuan. Robust H~ control for a class of uncertain nonlinear two- dimensional systems [ J ]. International Journal of Innovational Computing and Information Control,2005, 1(2) :181-191.
  • 7Xu Huiling, Zou Yun, Lu Junwei, et al. Robust H~ control for a class of uncertain nonlinear two- dimensional systems with state delays [ J ]. Journal of the Franklin Institute,2005,342 (7) : 877- 891.
  • 8Paszke W, Lam J, Ga|kowski K, et al. Delay-dependent stability condition for uncertain linear 2-D state- delayed systems [ A ]. Proceeding of the 45th IEEE Conference on Decision and Control [ C ]. San Diego, CA, USA : IEEE, 2006 : 2783-2788.
  • 9Izuta G. Stability of a class of 2-D output feedback control systems [ A]. IEEE International Conference on Systems, Man and Cybernetics, ISIC [ C ]. Montreal, Que : IEEE, 2007,2722 -2726.
  • 10Izuta G. Stability and disturbance attenuation of 2-D discrete delayed systems via memory state feedback [ J ]. International Journal of General Systems, 2007, 36(3) :263-280.

二级参考文献7

  • 1Du C, Xie L. Control and Filtering of Two-dimensional Systems [ M ]. Heidelberg: Springer-Verlag, 2002.
  • 2Xu S, Lam J, Lin Z, et al. Positive real control for uncertain two-dimensional systems [ J]. IEEE Trans Circuits Syst I, 2002, 49:1 659 - 1 666.
  • 3Cao Y, Lam J. Robust control of uncertain Markovian jump systems with time delay [ J ]. IEEE Trans Automat Control, 2000, 45: 77- 83.
  • 4De Souza C E, Fragoso M D. Robust H∞ filtering for uncertain Markovian jump linear systems [J]. Int J Robust and Nonlinear Control, 2002,12 : 435 -446.
  • 5Gao H, Wang C, Lam J, et al. Stabilization of 2 - D Markovian jump systems in Roesser model [ R ]. Kunming:The Eight International Conference on Control, Automation, Robotics and Vision, ICARCV 2004.
  • 6Xu S, Zou Y, Lam J, et al. Robust stabilization for a class of uncertain nonlinear two-dimensional systems [ R]. Kunming:The Eight International Conference on Control, Automation, Robotics and Vision, ICARCV 2004.
  • 7Boukas E, Liu Z. Delay-dependent stabilization of singular perturbed jump linear systems [ J]. Int J Control, 2004, 77(3): 310-319.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部