期刊文献+

基于比率且食饵有避难所的Leslie捕食食饵系统分析 被引量:1

Analysis of a ratio-dependent Leslie predator-prey system with a prey refuge
下载PDF
导出
摘要 提出了一类基于比率,具有HollingⅢ功能性反应,且食饵有避难所的Leslie捕食食饵系统.通过构造恰当的Dulac函数,得到了保证该系统正平衡点全局渐近稳定的充分条件.其后,通过利用Bendixson环域定理,进一步证明了在一定条件下系统存在极限环.最后,用数值模拟验证了结果. A ratio-dependent Leslie predator-prey system with Holling-Ⅲ functional response incorpora- ting a prey refuge is considered in this paper. By constructing a suitable Dulac function, sufficient conditions are obtained for the global asymptotic stability of the positive equil!brium. We also show the existence of limit cycles by using Bendixson theorem, Numeric simulations are carred out to illustrate the feasibility of the main results at last.
作者 伍慧玲
出处 《闽江学院学报》 2012年第2期4-8,21,共6页 Journal of Minjiang University
基金 福建省自然科学基金资助项目(2011J01007)
关键词 Leslie捕食食饵模型 极限环 全局渐近稳定 避难所 Leslie predator-prey model limit circle global stability refuge
  • 相关文献

参考文献8

  • 1Liang Z Q, Pan H W. Qualitative analysis of a ratio-dependent Holling-Tanner model [ J ]. Math Anal Appl, 2007 (334) : 954 -964.
  • 2Hsu S B, Huang T W. Global stability for a class of predator-prey systems[J]. SIAM J Appl Math, 1995,55(3) :763 -783.
  • 3高建国.基于比率的Holling-Tanner系统全局渐近稳定性[J].生物数学学报,2005,20(2):165-168. 被引量:25
  • 4Kar T K. Stability analysis of a prey-predator model incorporating a prey refuge [ J ]. Commun Nonlinear Sci Numer Simnl, 2005 (10) :681 -691.
  • 5Ma Z H, Li W L, Zhao Y, et al. Effects of prey refuge on a predator-prey model with a class of functional responses : the role of refuges [ J]. Mathematical Biosicence, 2009 (218) :73 - 78.
  • 6Huang Y J, Chen F D, Zhong L. Stability analysis of prey-predetor model with holling type Ⅲ response function incorporating a prey refuge[J]. Appl Math Comput, 2006(182) :672 -683.
  • 7Chen F D, Chen L J, Xie X D. On a Leslie-Cower predator-prey model incorporating a prey refuge [ J ]. Nonlinear Anal: Real World Appl, 2009,10(5 ) :2 905 - 2 908.
  • 8侯强,靳祯.基于比率且包含食饵避难的Holling-Tanner模型分析[J].山东大学学报(理学版),2009,44(3):56-60. 被引量:5

二级参考文献13

  • 1高建国.基于比率的Holling-Tanner系统全局渐近稳定性[J].生物数学学报,2005,20(2):165-168. 被引量:25
  • 2陈兰荪.数学生态学模型与研究方法[M].北京:科学出版社,1985.75-102.
  • 3HSU Sze-bi. Hopf bifurcation analysis for a predator-prey system of Holling and Leslie type[J]. Taiwan Residents Journal of Mathematics, 1999, 3(1) :35-53.
  • 4HSU Sze-bi. Global stability for a class of predator-prey systems[J]. SIAM J Appl Math, 1995, 55(3) :763-783.
  • 5KAR T K. Stabihty analysis of a prey-predator model incorporation a prey refuge[J]. Commun Nonlinear Sci Numer Simul, 2005, 10: 681-691.
  • 6HUANG Yunjin, CHEN Fengde, LI Zhong. Stability analysis of a prey-predator model with Holling type Ⅲ response function incorporating a prey refuge[J]. Applied Mathematics and Computation, 2006, 182:672-683.
  • 7HALE J. Ordinary differential equation[M]. Malabar: Krieger Publ Co, 1980.
  • 8COPPEL W A. A new class of quadratic system[J]. J Differential Equations, 1991, 92:360-372.
  • 9Yang Kuang, Edoardo Beretta. Global qualitative analysis of a ratio-dependent predator-prey system[J]. J Math Biol, 1998, 36(4):389-406.
  • 10Rui Xu, Chaplain M A J, Lansun Chen. Global stability for a delayed ratio-dependent predator-prey system without dominating instantaneous negative feedbacks[J]. Communications on Applied Nonlinear Analysis,2001, 8(4):17-27.

共引文献28

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部