期刊文献+

Lie Symmetry Analysis,Bcklund Transformations and Exact Solutions to (2+1)-Dimensional Burgers' Types of Equations

Lie Symmetry Analysis,Bcklund Transformations and Exact Solutions to (2+1)-Dimensional Burgers' Types of Equations
原文传递
导出
摘要 This paper is concerned with the (2+1)-dimensional Burgers' and heat types of equations.All of the geometic vector fields of the equations are obtained,an optimal system of the equation is presented.Especially,the Bcklund transformations (BTs) for the Burgers' equations are constructed based on the symmetry.Then,all of the symmetry reductions are provided in terms of the optimal system method,and the exact explicit solutions are investigated by the symmetry reductions and Bcklund transformations.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第5期737-742,共6页 理论物理通讯(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos.11171041 and 10971018 the Natural Science Foundation of Shandong Province under Grant No.ZR2010AM029 the Promotive Research Fund for Young and Middle-Aged Scientists of Shandong Province under Grant No.BS2010SF001 the Doctoral Foundation of Binzhou University under Grant No.2009Y01
关键词 (2+1)-dimensional Burgers' equation heat equation Lie symmetry analysis Bcklund transformation optimal system exact solution 对称性分析 方程组 精确解 类型 Burgers方程 场方程 几何学 BTS
  • 相关文献

参考文献13

  • 1H. Liu, J. Li, and Q. Zhang, J. Comput. Appl. Math 228 (2009) 1.
  • 2P. Olver, Applications of Lie Groups to Differential Equations, in Graduate texts in Mathematics, vol. 107, Springer, New York (1993).
  • 3G. Bluman and S. Anco, Symmetry and Integration Meth- ods for Differential Equations, in Applied Mathematical Sciences, vol. 154, Springer-Verlag, New York (2002).
  • 4T. Chou, Sci. Chin. Ser. A l0 (1987) 1009 (in Chinese).
  • 5H. Liu and J. Li, Nonlinear Anal. TMA 71 (2009) 2126.
  • 6H. Liu, J. Li, and L. Liu, Nonlinear Dyn. 59 (2010) 497.
  • 7H. Liu, J. Li, L. Liu, and Y. Wei, J. Math. Anal. Appl. 383 (2011) 400.
  • 8H. Liu, J. Li, and L. Liu, Adv. Appl. Cliff. Alge. 22 (2012) 107.
  • 9H. Liu, J. Li, and L. Liu, S Int. J. Bifurcation and Chaos (accepted).
  • 10S. Lou, J. Math. Phys. 41 (2000) 6509.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部