期刊文献+

一类具有时滞的恒化器模型的定性分析 被引量:3

Qualitative Analysis of a Chemostat Model with Time Delay
下载PDF
导出
摘要 恒化器模型是一个简化了的微生物培养模型.本文以时滞为参数,利用特征根法分析了系统平衡点的稳定性和hopf分支,得到了系统在平衡点处局部渐近稳定和出现hopf分支的充分条件,是对已有结果的有益补充. Chemostat model is a simplified model of microbial cultivation.In this paper,using time lag as a parameter,the stability and hopf bifurcation of the equilibriums in the chemostat model were analyzed using eigenvalue method.The sufficient conditions of local asymptotic stability and the occurrence of hopf bifurcation were obtain,which is a beneficial complement to present outcomes.
作者 刘三红
出处 《佳木斯大学学报(自然科学版)》 CAS 2012年第2期295-296,300,共3页 Journal of Jiamusi University:Natural Science Edition
关键词 时滞 局部渐近稳定 HOPF分支 time delay local asymptotic stability hopf bifurcation
  • 相关文献

参考文献10

  • 1Capemn J. Time Lag in Population Growth Response of Isochrys- is Galbana to a Variable Nitrate Environment [ J ]. Ecology , 1969, 50:188-192.
  • 2Thingstad T F, Langeland T I. Dynamics of Chemostat Culture: the Effect of a Delay in Cell Response[J]. J Thero Biol, 1974, 48 : 149 - 159.
  • 3Bush A W, Cook S E. The Effect of time Delay and Growth Rate Inhibition in the Bacterial Treatment of Wastewater[J]. J Thoo- ret Biol, 1975, 63 : 385 - 396.
  • 4Ellermeyer S F. Competition in the Chemostat: Global Asymptot- ic Behavior of a Model with Delayed Response in Growth[J]. SI- AM J Appl Math, 1994, 54:456 -465.
  • 5Wolkowicz G S K, Xia H. Global Asymptotic Behavior of a Che- mostat Model with Discrete Delays [J]. SIAM J Appl Math, 1997, 57 : 1019 - 1043.
  • 6MacDonald N. Time Delays in Chemostat Models. In Bazln M J, ed, Microbial Population Dynamies[M]. Florida: CRC Press, 1982.33 - 53.
  • 7Zhao T. Global Periodic Solutions and Uniform Persistence for a Single Population Model in Chemostat [ J ]. J Math Anal Appl, 1995, 193 : 329 - 352.
  • 8Ruan S, Wolknowicz G. Bifurcation Analysis of a Chemostst Model with a Distributed Delay[ J]. J Math Anal Appl, 1996, 204 : 786 - 812.
  • 9梁肇华,李宪高.一类具时滞反应罐方程的Hopf分支[J].广西科学,2000,7(4):254-256. 被引量:1
  • 10Cooke K, Gro.man Z. Discrete Delay, Distributed Delay and Stability Switches[J]. J Math Anal App], 1982, 86:592 - 627.

二级参考文献11

  • 1[1]Freedman H I, So J, Waltman P.Coexistence in a model of competition in the chemostat incorporating discrete delay.SIAM J Appl Math, 1989,49:859~870.
  • 2[2]Li Xiangao et al.. Hopf bifurcation analysis of some modified chemostat models. Northeast Math J, 1998,14(4):392~400.
  • 3[3]Ruan S, Wolknowicz G. Bifurcation analysis of a chemostat model with a distributed delay, J Math Anal Appl, 1996,204:786~812.
  • 4[4]Wolkowicz G, Xia H. Global asymptotic behavior of a chemostat model with discrete delays. SIAM J Appl Math,1997,57:1019~1043.
  • 5[5]Zhao T. Global periodic solutions and uniform persistence for a single population model in chemostat. J Math Anal Appl,1995,193: 329~352.
  • 6[6]Caperon J.Time lag in population growth response of isochrysis galb ana to a variable nitrate environment.Ecology, 1969,50:188~192.
  • 7[7]Bush A W, Cook A E. The effect of time delay and growth rate inhibition in the bacterial treatment of wastewater.J Theor Biol,1975,63:385~396.
  • 8[8]Hassard B D, Kazarinoff N D, Wan Y H. Theory and Applications of Hopf Bifurcation. Cambridge:Cambridge university press, 1981.
  • 9[9]Hale J.Theory of Functional Differential Equations.New York:Springer-verlag,1977.
  • 10[10]Dieudonné J. Foundations of Modern Analysis.New York:Academic Press, 1960.

同被引文献12

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部