期刊文献+

平衡特征正交分解及其在机翼气弹模型降阶中的应用 被引量:1

Balanced proper orthogonal decomposition and its application in order reduction of aeroelastic models of aircraft wing
下载PDF
导出
摘要 将平衡特征正交分解方法(Balanced Proper Orthogonal Decomposition,BPOD)应用于气弹控制系统降阶。该方法是平衡截断(balance truncation theory)与特征正交分解(Proper Orthogonal Decomposition,POD)的结合,能克服高阶系统为控制方法应用所带来的局限性。先给出BPOD方法的理论推导与降阶过程,后以三元大展弦比机翼的有限元模型为例进行仿真验证。仿真结果分析,BPOD方法可有效减少系统阶数,计算经济并保留输入输出关系,非常适用于气弹控制系统。 Balanced proper orthogonal decomposition (BPOD) was introduced to reduce the order of aeroelastic control system. The BPOD method is a combination of the proper orthogonal decomposition (POD) and balanced realization theory and can overcome the limitations caused by high dimension characteristics. The theoretical derivation and order reduction process of BPOD were presented. Then, the proposed method was applied to reduce the order of the aeroelastic model of a three-dimensional wing. Based on the analysis of numerical simulation results, it is shown that, while keeping the input-output relationship, BPOD is able to effectively reduce the system order as well as the computational cost, and is very suitable for aeroelastic control systems.
出处 《振动与冲击》 EI CSCD 北大核心 2012年第9期69-72,共4页 Journal of Vibration and Shock
关键词 平衡降阶 特征正交分解 气动弹性 balanced reduction POD aeroelasticity
  • 相关文献

参考文献8

  • 1Moore, B., Principal Component Analysis in Linear Systems: Controllability,Observability, and Model Reduction[J], IEEE Transactions on Automatic Control , 1981, 1(1), pp.17-31.
  • 2Zhou K, Salomon G, Wu E.Balanced realization and model reduction of unstable Systems[J].Int.J.Robust Nonlinear Contr., 1999,9:183一198.
  • 3Taehyoun Kim, Frequency-Domain Karhunen-Loeve Method and Its Application to Linear Dynamic Systems[J], AIAA Journal, 1998, 36(11), pp.2117-2123.
  • 4Taehyoun Kim, Kanivenahalli S.Nagaraja,† , Kumar G.Bhatia, Order Reduction of State-Space Aeroelastic Models Using Optimal Modal Analysis[J], Journal of Aircraft, 2004,41(6), pp.1440-1448.
  • 5Dowell, E.H., Hall, K.C., and Romanowski, M.C., Eigenmode Analysis in Unsteady Aerodynamics; Reduced-Order Models[J], Applied Mechanics Review, 1997,50(6), pp.371-386.
  • 6Rowley, C.W.,Model Reduction for Fluids, Using Balanced Proper Orthogonal Decomposition[J], International Journal of Bifurcation and Chaos in Applied Sciences and Engineering , 2005,15(3), pp.997-1013.
  • 7Arthur C.Or, Jason L.Speyer, Model Reduction of Input-Output Dynamical Systems by Proper Orthogonal Decomposition[J], Journal of Guidance, Control, and Dynamics, 2008,31(2),pp.322-328.
  • 8孟占峰,韩潮.基于混合Gramian的柔性航天器保结构平衡降阶[J].北京航空航天大学学报,2008,34(12):1437-1440. 被引量:1

二级参考文献7

  • 1Moore B C, Principal component analysis in linear system : controllability, observability and model reduction[ J]. IEEE Transactions on Automatic Control, 1981, 26(1 ) : 17 -32
  • 2Fernando K, Nicholson H. On the structure of balanced and other principal representations of SISO systems[ J ]. IEEE Transactions on Automatic Control, 1983, 28(2) :228 -231
  • 3Fernando K, Nicholson H. On the cross-Gramian for symmetric MIMO systems[J]. IEEE Transactions on Circuits and Systems, 1985, 32(5) : 487 - 489
  • 4Sorensen D C, Antoulas A C. The Sylvester equation and approximate balanced reduction[J]. Linear Algebra and Its Applications,2002, 351 (2) :671 -700
  • 5Meyer D G, Srinivasan S. Balancing and model reduction for second-order form linear systems[J]. IEEE Transactions on Automatic Control, 1996, 41 ( 11 ) : 1632 - 1644
  • 6Safonov M G, Chiang R Y. A schur method for balanced model reduction[ J]. IEEE Transactions on Automatic Control, 1989, 34(7) : 729 -733
  • 7Chahtaoui Y, Dooren P V. A collection of benchmark examples for model reduction of linear time invariant dynamical systems [ R ]. SLICOT Working Note 2002 -2, 2002

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部