期刊文献+

磁性液体阻尼减振器实验研究 被引量:5

Experimental research on magnetic fluid damper
下载PDF
导出
摘要 针对要求结构紧凑和能量耗散较小的场合,提出一种新的磁性液体阻尼减振器。该减振器利用磁性液体的独特性质,依靠液体的粘性阻尼耗散能量,是一种新型吸振装置。利用基于弹性悬臂梁的减振实验,研究多种实验参数对该减振器加于悬臂梁后减振效果的影响。实验结果表明,磁性液体阻尼减振器在实验中所有频率上对悬臂梁的振动都具有减振作用,而且同一减振器在小于1 Hz的振动频率范围内减振效果最好;实验中同种结构参数的减振器当使用饱和磁化强度为27.01kA/m的磁性液体时达到了最好的减振效果;该减振器对弹性悬臂梁的减振作用分别随着其中永磁体半径和永磁体孔半径的增大而增大,而且永磁体与外壳间有一最佳间隙,使其在其它参数相同时对悬臂梁的减振作用达到最大。 A new structure of magnetic fluid damper was proposed aiming at constructing damping devices with more compact structure and less energy consuming.Based on the unique properties of magnetic fluid,the damper,as a new energy absorption devie,consumes energy mainly owing to the viscous damping of liquids.The influences of various parameters on the vibration reduction effect of a cantilever beam installed with such kind of magnetic fluid damper were studied on an experiment table.The results show that there is damping effect at all the oscillation frequencies of the cantilever in the experiment,especially when the frequency is less than 1Hz.The damping effect is better when the magnetic fluid with saturated magnetization strength of 27.01 kA/m is used.It can be also found that the damping effect is enhanced when the radius of the magnet and the radius of the hole in the magnet are increased respectively.And there is an optimal gap between magnet and shell and in this case,the cantilever attains its maximum decay rate due to the attachment of magnetic fluid damper.
出处 《振动与冲击》 EI CSCD 北大核心 2012年第9期144-148,共5页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(50875017)
关键词 磁性液体 阻尼 减振器 悬臂梁 magnetic fluid damping damper cantilever
  • 相关文献

参考文献15

  • 1R.E.Rosensweig.The fascinating magnetic fluids [J].New Scientist.1966, 20: 146-148.
  • 2AVCO Missiles, Space and Electronics Group.Final report- feasibility study and model development for a ferrofluid viscous damper [R].Greenbelt, Maryland.1967.
  • 3K.Raj and R.Moskowitz.A review of damping applications of ferrofluids [J].IEEE Transactions on Magnetics.1980, Mag-16(2): 358-363.
  • 4Katsuto Nakatsuka, Hidekichi Yokoyama and Junzo Shimoiizaka.Damper application of magnetic fluid for a vibration isolating table [J].Journal of Magnetism and Magnetic Materials.1987, 65:359-362.
  • 5Abé Masato, Fujino Yozo and Kimura Shuji.Active tuned liquid damper (TLD) with magnetic fluid [C].Proceedings of SPIE - The International Society for Optical Engineering.1998, 3329: 620-623.
  • 6G Y Zhou and L Z Sun.Smart colloidal dampers with on-demand controllable damping capability [J].Smart Materials and Structures.2008, 17: 1-11.
  • 7Jun Liu.Analysis of a porous elastic sheet damper with a magnetic fluid [J].Journal of Tribology.2009, 131: 021801-1-021801-5.
  • 8邢海军,杨绍普,郭树起,申永军.一种磁流变阻尼器动态阻尼力模型[J].振动与冲击,2010,29(7):105-108. 被引量:10
  • 9王恩荣,Su Chunyi,Rakheja Subhash.新型可控磁流液阻尼器的应用研究[J].南京师范大学学报(工程技术版),2003,3(2):35-40. 被引量:2
  • 10Neil D.Sims, Roger Stanway and Andrew R.Johnson.Vibration control using smart fluids: a state-of-the-art review[J].The Shock and Vibration Digest.1999, 31(3): 195-203.

二级参考文献32

  • 1邓志党,高峰,刘献栋,杜发荣.磁流变阻尼器力学模型的研究现状[J].振动与冲击,2006,25(3):121-126. 被引量:70
  • 2[1]Winslow W M. Induced fibration of suspensions[J]. J of Applied Physics, 1949, 20:1137~1140.
  • 3[2]Rabinow J. The magnetic fluid clutch[J]. AIEE Transactions, 1948, 67:1308~1315.
  • 4[3]Klinggenberg D J, Van Swol F, Zukoski C F. Dynamic simulation of electrorheological suspension[J]. J of Chemical Physics, 1989, 91: 7888.
  • 5[4]Lou Z, Ervin R D, Filisko F E. A preliminary parametric study of electrorheological dampers[J]. Transactions ASME J of Fluid Engineering, 1994, 116: 570.
  • 6[5]Redfield R C. Performance of low-bandwidth, semi-active damping concepts for suspension control [J]. J of Vehicle Dynamic System, 1991, 20: 245~267.
  • 7[6]Hwang S H, Heo S J, Kim H S, et al. Vehicle dynamic analysis and evaluation of continuously controlled semi-active suspensions using hardware-in-the-loop simulation[J]. J of Vehicle System Dynamics, 1997, 27: 423~434.
  • 8[7]Margida A J, Wesis K D, Carlson J D. Magneto-rheological materials based on iron particles [J]. Int J of Modern Physics B, 1999, 10: 3335~3341.
  • 9[8]Dyke S J, Spencer B F Jr, Sain M K, et al. An experimental study of MR dampers for seismic protection[J]. J of Smart Materials and Structures, 1998, 7: 693~703.
  • 10[9]Choi S B, Lee H S, Hong S R, et al. Control and response characteristics of a magneto-rheological fluid damper for passenger vehicles[A]. Proceedings of SPIE, Smart Structures and Materials[C]. 2000: 438~443.

共引文献11

同被引文献34

  • 1梁灿彬 秦光戎 梁竹健.电磁学[M].北京:人民教育出版社,1982.106-111.
  • 2Mitamura Y,Yano T,Nakamura W,et al.A magnetic fluid seal for rotary blood pumps:Behaviors of magnetic fluids in a magnetic fluid seal[J].Biomed Mater Eng,2013,23(1-2):63-74.
  • 3Luis M,Fraujo C,Ryszard R.A novel magneto-optic ferrofluid material for sensor applications[J].Sensors and Actuators A:Physic al,2005 (123/124):438-443.
  • 4Buioca C D,Iusan V,Stanci A,et al.A new type magnetofluidic actuator[J].Journal of Magnetism and Magnetic Materials,2002,252:318-320.
  • 5Cotae C,Baltag O,Olaru R,et al.The study of a magnetic fluid-based sensor[J].Journal of Magnetism and Magnetic Materials,1999,201:394-397.
  • 6Lai Q Yu,Lu J Z,Ji X Y.Study of preparation and properties on magnetization and stability for ferromagnetic fluids[J].Materials Chemistry and Physics,2000,66(1):6-9.
  • 7Huang W,Wang X L.Preparation and Properties of e-Fe3NBased Magnetic Fluid[J].Nanoscale Research Letters,2008(3):260-264.
  • 8CHASTEEN S.Maguetic Fluid (Ferrofluid)[DB/OL].http://sciencegeekgirl.com/activities/ferrofluid_chasteen.pdf.
  • 9N C Popa, I De Sahara, I. Anton, eta[. Magt:etic fluids in aedy- namic measuring devices [ J]. Journal of Magnetism and Magnetic Ma- terials, 1999(201 ) : 385 -390.
  • 10S. Baglio, A. Barrera, N. Savalli, et al. Modeling and Design of Fer- rofluidic Sensors [ M]. Device Applications of Nonlinear Dynamics, SBaglio, aBulsara, New York: Springer, 2006: 129-138.

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部