期刊文献+

对两个频率相近成分作频谱校正的非迭代形式研究 被引量:3

Non-iterative spectrum correction for signals with closely spaced frequency components
下载PDF
导出
摘要 双频率模型(DFM)的频谱校正是否存在类似于单频率模型(CSM)的非迭代校正形式、相应的校正性能尚未见文献报道。分析了CSM存在简单校正公式的原因,给出了DFM加矩形窗的非迭代校正式,采用包含幅度相差10倍的DFM对校正式进行仿真考核。研究表明:CSM存在简单校正式的原因在于窗谱函数可以分解为超越函数与有理分式的乘积,前者在相邻的离散谱线上绝对值相等;由这两个特性可建立DFM相对简单频谱校正关系,但是除了DFM加矩形窗的情形外,其它均涉及高于2次的多项式方程。仿真考核表明,给出的校正式对幅度强的成分的误差小于幅度弱者,并且当DFM频率间隔超过两个经典频率分辨率时,最后采用CSM校正式。 For a complex sinusoid model (CSM), there exists a set of explicit expressions for spectrum correction. However, it is not clear whether there exist corresponding formulas for double-frequency model (DFM). To determine the applicability of explicit expressions to DFM, the nature of ratio correction for CSM was analyzed. The explicit correction formulas were presented for DFM without windowing, and were examined by using a DFM signal with one strong component whose amplitude is 10 times greater than the weaker one. The study shows: the essence of existence of simple correction expression for CSM is that the spectrum function with common windows can be factorized as a transcendental part multiplying by a rational fraction, and absolute values of the neighbor lines in discrete spectrum of the transcendental part are equal. With above properties, the frequency equations for DFM, only containing the rational fraction, can be deduced. Only for the case of DFM without windowing, can the frequency equation be simplified to a quadratic polynomial, and at least cubic polynomial for other cases, such as Hanning window. In conclusion, it is not worthy or impossible to find the explicit correction expressions except for DFM without windowing. The simulation results show that, the precision of the given correction expression for the strong component is better than that of the weaker one, with the frequency scanning of 0.5 -2.0 resolutions of the fast Fourier transform. But the CSM based correction is preferred if the frequency difference of DFM is greater than 2 canonical resolutions of FFT.
出处 《振动与冲击》 EI CSCD 北大核心 2012年第10期24-28,共5页 Journal of Vibration and Shock
基金 上海市教育委员会科研创新项目(09YZ173) 上海师范大学科研基金项目(SK201133)
关键词 频谱 傅里叶变换 快速傅里叶变换(Ffvr) 频谱校正 窗函数 spectrum Fourier transform FFT spectrum correction window function
  • 相关文献

参考文献11

二级参考文献82

共引文献326

同被引文献39

  • 1MOSTARAC P, MALARIC R, HRVOJE H. Adaptive chirp transform for frequency measurement [ J]. Measurement, 2012,45 (3) :268-275.
  • 2LI G, GAOL K, LEI J Y, et al. A vector decomposition FFI" algorithm to improve power network frequency [ J ]. Procedia Engineering, 2011,24 : 22-27.
  • 3VARLET M, RICHARDSON M J. Computation of continu- ous relative phase and modulation of frequency of human movement [ J ]. Journal of Biomeehanics, 2011, 44: 1200-1204.
  • 4GI~NIA B, VINCENT C. Empirical assessment of the Max- imum Likelihood Estimator quality in a parametric count- ing process model for recurrent events [ J]. Computational Statistics & Data Analysis,2012,56(2) :297-315.
  • 5胡广书.数字信号处理理论、算法与实现[M].北京:清华大学出版社,2008:126-127.
  • 6CRAMI~R H. Mathematical methods of statistics [ M ]. Princeton, NJ : Princeton Univ. Press, 1946.
  • 7Tufts D W,Kumaresan R.Estimation of frequencies of multiple sinusoids making linear prediction perform like maximum likelihood[J].Proc.IEEE,1982,70 (9):975-985.
  • 8Kay S M,Marple S L.Spectrum analysis a modem perspective[J].Proc.IEEE,1981,69(11):1380-1419.
  • 9Jain V K,Collins W L,Davis D C.High-accuracy analog measurements via interpolated FFT[J].IEEE Transactions on Instrumentation and Measurement,1979,28 (2):113-121.
  • 10Grandke T.Interpolation algorithms for discrete Fourier transforms of weighted signals[J].IEEE Trans.On Instrumentation and Measurement,1983,32 (2):350-355.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部