期刊文献+

压缩感知在脉冲超宽带穿墙雷达中的应用 被引量:1

The application of CS in UWB through-wall radar
下载PDF
导出
摘要 传统的超宽带穿墙雷达数据采样需要满足Nyquist采样定理,超宽带大数据量增大了A/D转换时的硬件压力,压缩感知理论突破了传统Nyquist采样的限制,它是基于信号的稀疏性,测量矩阵的随机性和非线性优化算法来对信号进行压缩采样和重构。文章针对超宽带穿墙雷达的具体工作过程和穿墙雷达目标成像空间的稀疏性提出了一种基于压缩感知理论的成像方法,并通过仿真表明了该方法的可行性和有效性。 The Nyquist sampling theorem must be satisfied in traditional data acquisition of Ultra wideband Through-wall Decection Radar,Ultra-wideband large amount of data increases the problem of A/D hardware,Compressed Sensing(CS) theory is a great breakthrough of traditional Nyquist sampling theory,it accomplishes compressive sampling and recovery of signal based on the sparsity of interested signal,the randomicity of measurement matrix and nonlinearized optimization method.With the specific work process of UWB-TWDR and the sparistiy of the target,a method of imaging with compressive sensing is proposed in this paper,the simulation show that the new imaging method is effective and practical.
作者 刘俞伯
出处 《大众科技》 2012年第5期47-49,34,共4页 Popular Science & Technology
基金 国家自然科学基金项目:基于UWB信号的隐藏活动目标自适应检测技术研究(60572054)
关键词 超宽带 压缩感知 测量模型 有效性 Ultra-wideband compressive sampling measurement model effective
  • 相关文献

参考文献8

  • 1Tsaig Y and Donoho D L. Extensions of compressed sensing[J].Signal Processing,2006,86(3):549-571.
  • 2Candes E J, Romberg J , and Tao T . Robust uncertainty principles:Exact signal reconstruction from highly incomplete ~luency infoma~on[J],lF~l~. Tramactiom on InfDmaafion Theory,2006,52(2):489-509.
  • 3余慧敏,方广有.压缩感知理论在探地雷达三维成像中的应用[J].电子与信息学报,2010,32(1):12-16. 被引量:49
  • 4Candes E J. Compressive sampling[C].Intemational Cong~ of Math~katicam,Ma~d,Spain, 2006,3:1433-1452.
  • 5Baraniuk R and Steeghs P. Compressive radar imaging[C].IEEE Radar Conference, Waltham, Massachusetts,USA,April 2007:128-133.
  • 6Gurbuz A C,McClellan JH, and Waymond RS. Compressive sensing for GPR imaging[C].Conference Record of the Fo~y-First A~omar Conference on Sin~s, Sys~m and Computexs,Pacitic Grove, CA,USA,Nov.4-7~J7:2223-2227.
  • 7Boufounos P,Duarte M F,and Baraniuk R G.Sparse signal reconstruction form noisy compressive m~ ufing cross validafion[C].mF.V~ Wofle~hop on Statistical Signal Proces~g~re2037:2(D-303.
  • 8Md Mashud Hyder and Kaushik Mahata. Direction-of-Arrival Estimation Using a Mixed 12,0 Norm Approximation[C] .IEEE Transaction on signal processing,VOL.58,NO.9,September 2010.

二级参考文献18

  • 1Daniels D J. Surface-penetrating radar[J]. Electronics and Communication Engineering Jourual, 1996, 8(4): 165-182.
  • 2Fang G Y. The research activities of ultrawide-band (UWB) radar in China[C]. IEEE International Conference on Ultra-Wideband, Marina Mandarin Hotel, Singapore, Sept. 24-26, 2007: 43-45.
  • 3Xu X and Miller E L. Optimization of migration method to locate buried object in lossy medium[C]. IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, Jun. 24-28, 2002: 337-339.
  • 4Leuschen C J and Plumb R G. A matched-filter-based reverse-time migration algorithm for ground-penetrating radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(5): 929-936.
  • 5Carin L, Geng N, and McClure M, et al.. Ultra-wide-band synthetic-aperture radar for mine-field detection[J]. IEEE Antennas and Propagation Magazine, 1999, 41(1): 18-33.
  • 6Hayakawa H, Nadamoto A, and Uesaka S. 3D radar imaging of buried objects using arbitrary scaning GPR[C]. Eighth International Conference on Ground Penetrating Radar, Queensland, Australia, May 23-26, 2000: 273-276.
  • 7Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 8Candes E J, Romberg J, and Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006,59(8): 1207-1223.
  • 9Baraniuk R. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
  • 10Candes E J. Compressive sampling[C]. International Congress of Mathematicians, Madrid, Spain, 2006, 3: 1433-1452.

共引文献48

同被引文献13

  • 1Shen F F, Zhao G H, Shi G M, et al. Compressed sensing based ultra-wideband radar system [ C ]//IEEE CIE International Conference on Radar. Chengdu, Chi- na, 2011, 2: 1850-1853.
  • 2Baraniuk R G, Cevher V, Duarte M F, et al. Model- based compressive sensing [ J ]. IEEE Transactions on Information Theory, 2010, 56 ( 4 ) : 1982 - 2001.
  • 3Sen S, Nehorai A. Sparsity-based multi-target tracking using OFDM radar [ J ]. IEEE Transactions on Signal Processing, 2011, 59(4) : 1902 - 1906.
  • 4Herman M, Strohmer T. Compressed sensing radar [C]//IEEE Radar Conference. Rome, Italy, 2008 : 1-6.
  • 5Herman M A, Strohmer T. High-resolution radar via compressed sensing [ J ]. IEEE Transactions on Signal Processing, 2009, 57 (6): 2275 - 2284.
  • 6Berger C R, Wang Z H, Huang J Z, et al. Application of compressive sensing to sparse channel estimation[ J]. IEEE Communications Magazine, 2010, 48( 11 ) : 164- 174.
  • 7Eldar Y C, Mishali M. Robust recovery of signals from a structured union of subspaces [J]. IEEE Transactions on Information Theory, 2009, 55( 11 ) : 5302 -5316.
  • 8Eldar Y C, Bolcskei H. Block-sparsity: coherence and efficient recovery [C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Taipei, China, 2009 : 2885 - 2888.
  • 9Eldar Y C, Kuppinger P, Bolcskei H. Block-sparse signals: uncertainty relations and efficient recovery [J]. IEEE Transactions on Signal Processing, 2010, 58 (6) : 3042 - 3054.
  • 10Wu L N, Feng M, Qi C H, et al. Recent patents on ultra narrow band modulations [ J ]. Recent Patents on Signal Processing, 2011, 1 ( 1 ) : 36 - 47.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部