期刊文献+

社交网络逐步扩散原理在学生客户识别模型中的对比研究 被引量:1

下载PDF
导出
摘要 文章探讨了社交网络逐步扩散原理在学生客户识别模型中的应用,通过实验对比该理论的两种算法实现方式在性能及识别准确率方面的差异,得出实际建设中应采用的最优算法,并讨论了其相关研究现状。
作者 雷蕾 冯凯
出处 《移动通信》 2012年第9期53-55,60,共4页 Mobile Communications
  • 相关文献

参考文献9

  • 1Tang Jie, Zhang Duo, Yao Limin. Social network extraction of academic researchers[C]. 7th 1EEE International Conference on Data Mining. Washington, 2007: 292-301.
  • 2吴俊伟,何良华,方钰.基于动态贝叶斯网络的社交圈归属匹配模型[J].计算机应用,2008,28(12):3102-3104. 被引量:2
  • 3Yang Yuanyuan, Dong Sufen, Teng Guifa, et al. Research of Nodes Intimacy in SNS Networks[C]. 2010 International Conference on Internet Technology and Application. Wuhan, 2010: 1-4.
  • 4Zhang Zhijie, Lu Tingjie. Understanding SNS user's intention: An extension of technology acceptance model[C]. 2011 International Conference on Electrical and Control Engineering(ICECE). Yichang, 2011 : 5148-5151.
  • 5岳小婷.基于客户消费行为的电信客户细分[J].电子商务,2011,12(12):60-61. 被引量:5
  • 6[ Stephen P Borgatti, Ajay Mehra, Daniel J Brass, et al. Network AnalySis in the Social Sciences[J]. Science, 2009(13): 892-895.
  • 7Henry L Tischler. Introduction to Sociology[M]. San Diego: Harcourt Brace College Publishers, 1990: 110-133.
  • 8John M Levine, Lauren B Resnick, E Tory Higgins. Social Foundations of Cognition[J]. Annual Review af Psychology, 1993(44): 585-612.
  • 9Milgram S. The small world problem[J]. Psychology Today, 1967(02): 60-67.

二级参考文献14

  • 1林盛,肖旭.基于RFM的电信客户市场细分方法[J].哈尔滨工业大学学报,2006,38(5):758-760. 被引量:42
  • 2MILGRAM S. The small world problem [ J]. Psychology Today, 1967: 61.
  • 3TANG JIE ZHANG DUO, YAO LIMIN. Social network extraction of academic researchers [ C]//7th IEEE International Conference on Data Mining. Washington: IEEE, 2007:292-301.
  • 4PEARL J. Probabilistie reasoning in intelligent systems: Networks ot plausible inference [ M]. San Francisco: Morgan Kanfman Publishers, 1988.
  • 5DEAN T, KANAZAWA K. A model for reasoning about persistence and causation [ J]. Computational Intelligence, 1990, 5 (3) : 142 - 150.
  • 6RUSSELL S, NORVIG P. Artificial intelligence: A modern approach [ M]. 2rid ed. New Jersey: Prentice Hall, 2003.
  • 7ZWEIG G. Speech recognition with dynamic Bayesian networks [ D]. Berkeley: University of California, 1998.
  • 8MURPHY K P. Dynamic Bayesian networks: Representation, inference and learning [ D]. Berkeley: University of California Berkley, 2002.
  • 9STEPHENSON T A, MATHEW M, BOURLARD H. Modeling auxiliary information in Bayesian network based ASR [ C]//Eurospeech 2001: 7th European Conference on Speech Communiaction and Technology. [ S. l. ] : IDIAP, 2001:2765 -2768.
  • 10KONING Y, MORGAN N. GDNN: A gender-dependent neural net- work for continuous speech recognition [ C]// IJCNN: Proceedings of 1992 International Joint Conference Neural Networks. Washington: IEEE, 1992, 2:332-337.

共引文献5

同被引文献1

  • 1陈代春.数据仓库技术及其应用研究[D].中南大学计算机系,2001.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部