期刊文献+

基于动态权值的多分类器故障诊断系统 被引量:3

Multiple Classifier Fault Diagnosis System Based on Dynamic Weight
下载PDF
导出
摘要 为提高动态系统故障诊断的精确性,以及减少系统运行环境对故障诊断带来的影响,本文提出了一种基于动态权值的多分类器故障诊断系统.该方法使用决策支持度来衡量当前诊断任务中各分类器的实时决策可信度,并将其联合分类器性能指标动态地为各分类器赋予融合权值,决策性能好且决策支持度高的分类器决策结果获得较大的融合权值,同时,使不可靠决策结果的融合权值趋近于零.在此基础上,将多分类器系统优化为实时性能较好的分类器组成的子系统进行故障诊断,减少了不可靠决策的干扰,进一步提高了融合决策的精确度.试验表明本文方法具有良好的诊断决策性能,能获得比单个分类器和常用的一些融合算法更高的分类准确度. In order to improve the accuracy of fault diagnosis for dynamic system,and reduce the diagnosis influence from operating environment,a new fusion method in multiple classifier system based on dynamic weight is proposed.The new approach dynamic assigns weights to base classifiers according to their classification accuracy and decision support value.Bigger weights are assigned to more reliable decision output,and the weights of unreliable outputs are close to zero.In this sense,a subsystem is used to make final decision instead of system.Experimental results demonstrate that the new fusion method can get good fault diagnosis performance,and it can get higher accuracy than single classifier and some common used fusion methods.
出处 《电子学报》 EI CAS CSCD 北大核心 2012年第4期734-738,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.61071162)
关键词 故障诊断 多分类器系统 数据融合 决策支持度 动态权值 fault diagnosis multiple classifier system data fusion decision support value dynamic weight
  • 相关文献

参考文献14

  • 1W Wang, D Kanneg. An integrated classifier for gear system monitoring[J]. Mechanical Systems and Signal Processing, 2009,23(4) : 1298 - 1312.
  • 2L Xu, A Krzyzak, C Y Suen. Methods of combining multiple classifiers and their applications to handwriting recognition[J]. IEEE Transactions on Systems, Man and Cybernetics, 1992, 22 (3) :418 - 435.
  • 3L I Kuncheva. Combining Pattern Classifiers:Methods and A1- gorithm[M]. New Jersey, USA: Wiley-interscience publica- tion, 2004.
  • 4T K Ho, J Hull, S N Srihari. Decision combination in multiple classifier systems [J]. IEEE Transactions on Pattem Analysis and Machine Intelligence, 1994,16( 1 ) :66 - 75.
  • 5E Kim, W Kim, Y Lee. Combination of multiple classifiers for the customer' s purchase behavior prediction[J]. Decision Sup- port Systems,2002,34(2) : 167 - 175.
  • 6J Kittler, M Hatef, R P W Duin, J Matas. On combining classi- fiers[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20 (3) : 226 - 239.
  • 7H Allincay. On naive Bayesian fusion of dependent classifiers[J]. Pattern Recognition Letters, 2005,26( 15):2463- 2473.
  • 8李剑峰,乐光新,尚勇.基于改进型D—S证据理论的决策层融合滤波算法[J].电子学报,2004,32(7):1160-1164. 被引量:23
  • 9Y S Huang, C Y Suen. A method of combining multiple experts for the recognition of unconstrained handwritten numerals [J]. IE Transactions on Pattern Analysis and Machine Intelli- gence, 1995,17 (1) : 90 - 94.
  • 10C A Shipp, L I Kuncheva. Relationships between combination methods and measures of diversity in combining classifiers [J]. Information Fusion,2002,3(2) : 135 - 148.

二级参考文献28

  • 1Rahman A F R, Fairhurst M C. Multiple classifier decision combination strategies for character recognition: a review[ J ]. International Journal on Document Analysis and Recognition (IJDAR) ,2003,5(4): 166 - 194.
  • 2Jain A K, Duin R P W, Mao Jianchang. Statistical pattern recognition: a review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22( 1 ) :4 - 37.
  • 3Altincay H,Demireklera M. Undesirable effects of output normalization in multiple classifier systems[ J]. Pattern Recognition Letters,2003,24(9- 10):1163- 1170.
  • 4Raudys s, Roli F. The behavior knowledge space fusion method: analysis of generalization error and strategies for performance improvement [A], Proceedings of 4th International Workshop on Multiple Classifier Systems (MCS) [C]. Lecture Notes in Computer Science (LNCS), Berlin: Springer-Verlag Press, 2003.2709.55 - 64.
  • 5Parker J R. Rank and response combination from confusion matrix data[J]. Information Fusion,2001,2(2) : 113- 120.
  • 6Kuncheva L l,Bezdek J C,Duin R P W. Decision templates for multiple classifier fusion.. An experimental comparison[ J]. Pattern Recognition,2001,34(2) :299 - 314.
  • 7Thierry D. A neural network classifier based on Dempster- Shafer theory [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans,2000,30(2) : 131 - 150.
  • 8Valet L, Ramasso E, Teyssier S. Quality evaluation of insulating parts by fusion of classifiers issued from tomographic images [ J ]. Information Fusion, 2008,9(2 ) :211 - 222.
  • 9Xu Lei, Krzyzak A, Suen Ching Y. Methods of combining multiple classifiers and their applications to handwriting recognition[ J ]. IEEE Transactions on System, Man, and Cybernetics, 1992,22 ( 3 ) :418 - 435.
  • 10Duin R P W, Juszczak P, Paclik P, et al. PRTools4, A Matlab Toolbox for Pattern Recognition[CP/OL]. Delft University of Technology, 2004.

共引文献30

同被引文献37

  • 1徐启华,师军.应用SVM的发动机故障诊断若干问题研究[J].航空学报,2005,26(6):686-690. 被引量:20
  • 2刘杏芳,郑晓东,徐光成,等. 基于流形学习的地震属性特征提取方法及应用[C]// 2010年国际石油地球物理技术交流会,2010年7月23-24,中国,兰州. 2010:144-146.
  • 3Stephens R I,Chamberlain A G,Cretollier F.Dynamic Positioning Architecture[P].United States Patent:US 20100088030A1,2010-04-08.
  • 4S?rensen A J.A survey of dynamic positioning control systems[J].Annual Reviews in Control,2011,35(1):123-136.
  • 5Isermann R.Fault-Diagnosis Applications[M].Berlin:Springer,2011.286-295.
  • 6Raol J R.Multi-Sensor Data Fusion With Matlab[M].New York:CRC Press,2010.11-61.
  • 7Khaleghi R,Khamis A,Karry F O,et al.Multisensor data fusion:a review of the state-of-the-art[J].Information Fusion,2013,14(1):28-44.
  • 8Ajgl J,?imandl M,Dunik J.Millman's formula in data fusion[A].Proceedings of the 10th International PhD Workshop on Systems and Control[C].Pilsen:University of West Bohemia,2009.1-6.
  • 9Fiengo G,Domenico D D,Glielmo L.A hybrid procedure strategy for vehicle localization system:design and prototyping[J].Control Engineering Practice,2009,17(1):14-25.
  • 10Wu C W,Chung Y N,Chung P C.A hierarchical estimator for object tracking[J].EURASIP Journal on Advances in Signal Processing,2010,2010:1-11.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部