期刊文献+

基于量子计算模型的混合进化算法及其性能分析 被引量:2

Hybrid Evolutionary Algorithm Based on Quantum Computing and Performance Analysis
下载PDF
导出
摘要 提出了基于量子动力学机制的混合进化算法,该算法依据小生境机制将初始个体划分为实数编码染色体的子群,种群内部采用自适应算子搜索局域的最优解,种群之间则采用基于量子动力学机制的协同进化.混沌系统生成的初始染色体序列实际上并不完全随机,因此我们提出非对称区间产生混沌染色体序列并能生成更多的优秀个体.为解决二进制算法所不能避免的精度与效率的冲突,本文采用十进制编码染色体.利用量子动力学机制的高度分布并行性,本模型能更好的适应复杂的动态环境.我们不仅证明了算法的收敛性而且分析了提高算法性能的策略,仿真实验也验证了该算法的优越性. A novel Hybrid Evolutionary Algorithm based on Quantum computing(HQEA) is proposed.In the algorithm population is divided into subpopulations by niche methods.Each subpopulation can obtain optimal solution by the self-adaptive operator and all subpopulations can co-evolve by quantum dynamic mechanism.Initialization chaotic sequence is not as well as random in homogeneity,so this approach proposes strategy of unsymmetrical area to obtain optimal solution more.This approach adopts real-coded chromosome to solve precision and efficiency problem of binary system.The algorithm can adjust to dynamic environment more because of the distributed and parallel characteristic based on quantum dynamic mechanism.The convergence of the HQEA is proved and the strategy for improving the performance of HQEA has been analyzed.Its superiority is shown by some simulation experiments in this paper.
出处 《电子学报》 EI CAS CSCD 北大核心 2012年第4期856-860,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.61075115) 上海市教委科研创新基金重点项目(No.12ZZ185)
关键词 量子进化算法 量子动力学机制 协同进化 多峰函数优化 实数编码染色体 quantum evolutionary algorithm quantum dynamic mechanism coevolutionary multi-modal function optimization real-coded chromosome
  • 相关文献

参考文献11

  • 1Goldberg D E, Richardson J. Genetic algorithms with sharing for multi-modal function optimization[ C ]. Grefenstette Eds. Proccodings of the second International Conference on Genetic Algorithms, NJ USA: Lawrence Erlbaum Associates, 1987.41 -49.
  • 2Narayanan A, Moore M. Quantum-inspired genetic algorithm [ C ]. Proc of IEEE. International Conference on Evolutionary Computation, Piscataway: IEEE Press, 1996.61 - 66.
  • 3Hart KH, Kim JH. Genetic quantum algorithm and its applica- tion to combinatorial optimization problems [ C ].//in Proc of 1EEE International Conference on Evolutionary Computation, Piscataway: 1EEE Press,2000. 1354 - 1360.
  • 4You XM,LIn S, Shuai DX. On parallel immune quantum evo- lutionary algorithm based on learning mechanism and its con-vergence[ C] .//In: L. Jiao et al Eds, proc of ICNO)6, PTI 4221, Berlin Heidelberg: Spring-Verlag, 2006.903 - 912.
  • 5帅典勋,宫睿.ATM网络带宽动态优化的广义粒子模型和算法[J].计算机学报,2007,30(3):380-396. 被引量:2
  • 6游晓明,刘升,帅典勋.求解多峰函数优化问题的免疫量子进化算法[J].石油化工高等学校学报,2007,20(3):45-49. 被引量:2
  • 7王孙安,郭子龙.混沌免疫优化组合算法[J].控制与决策,2006,21(2):205-209. 被引量:13
  • 8张伟,胡昌华,焦李成.Bootstrap—自适应混沌克隆网络与陀螺漂移预测[J].电子学报,2009,37(9):2035-2040. 被引量:4
  • 9刘芳,李阳阳.量子克隆进化算法[J].电子学报,2003,31(z1):2066-2070. 被引量:11
  • 10He J and Yao X. A study of drift analysis for estimating com- putation time of evolutionary algodthms[J]. Natural Comput- ing,2004,3:21 - 35.

二级参考文献70

  • 1杨淑媛,刘芳,焦李成.量子进化策略[J].电子学报,2001,29(z1):1873-1877. 被引量:32
  • 2杨孔雨,王秀峰.自适应多模态免疫进化算法的研究与实现[J].控制与决策,2005,20(6):717-720. 被引量:12
  • 3公茂果,杜海峰,焦李成.基于人工免疫响应的线性系统逼近[J].中国科学(E辑),2005,35(12):1288-1303. 被引量:10
  • 4潘正军 康立山.演化计算[M].北京:清华大学出版社,1998..
  • 5Olfa Nasaroui,Fabio Gonzdez,Dipankar Dasgupta.The Fuzzy Artificial Immune System:Motivations,Basic Concepts and Application to Clustering and Web Profiling[J].Fuzzy System,2002,1(2):711-716.
  • 6You Y,Sheng W X,Wang S A.Study of Chaos Genetic Algorithms and Its Application in Neural Networks[A].TENCON'02 Proc[C].Bangkok,2002,1:232-235.
  • 7Zou E,Li X F,Zhang T S.A Hybrid Algorithm about Chaos Search for FNN[A].ASIC 2003 Proc of 5th Int Conf[C].Beijing,2003,1:49-53.
  • 8ZHANG G P, KLINE D M. Quarterly time-series forecasting with neural net works [J]. IEEE Transactions on Neural Networks, 2007,18(6) : 1800 - 1814.
  • 9SHIAN-CHANG HUANG, TUNG-KUANG WU.A hybrid unscented kalman filter and support vector machine model in option price forecasting[ J] .Lecture Notes in Computer Science, 2006, (4221) :303 - 312.
  • 10KIN KEUNG LAI, LEAN YU, SHOUYUANG WANG, HUANG WEI. A novel nonlinear network ensemble model for financial time series forecasting[ J]. Lecture Notes in Computer Science, 2006, (3991) : 790 - 793.

共引文献26

同被引文献22

  • 1Narayanan A, Menneer T. Quantum artificial neural network architectures and components[J]. Information Sciences,2000, 128(3/4):231-255.
  • 2Gupta S,Zia R K P. Quantum neural networks[J]. Journal of Computer and System Science, 2001,63 (3) :355-383.
  • 3Ventura D. Quantum computing and neural information processing[J]. Information Sciences, 2000,128 (3/4): 147-148.
  • 4Hou Xuan. Research on hyperspectral data classification based on quantum counter propagation neural network [C]// 2012 International Conference on Electrical Insulating Mate- rials and Electrical Engineering (EIMEE),2012:1377-1381.
  • 5阮晓刚.人工智能之路:神经计算科学-在细胞水平上模拟脑功能[M].北京:国防工业出版社,2006.
  • 6侯旋.量子神经网络高光谱图像研究[D].西安:西北工业大学,2013.
  • 7Akyildlz,LiW Y, Vuran M C, ct al. Next Generation/Dynamic Spcctrum Acccss/Cognitive Radio Wireless Networks :A Survey [J]. Computer Networks Journal,2006,50(3): 2127-2159.
  • 8ZOU Chao,JIN Tao,Chigan C, et al. QoS-Aware Distributed Spcctrum Sharing for Heterogeneous Wireless Cognitive Networks [J]. Computer Networks,2009,52(4) : 864-878.
  • 9HAN Ning,SHON Sunghwan, Chung Jae Hak, et al. Spcctral Correlation Based Signal Dctcction Method for Spcctrum Sensing in IEEE 802. 22 WRAN Systems [C]//Thc 8th International Confcrcncc on Advanced Communication Technology. Piscataway : HEPrcss,2008 : 1770-1775.
  • 10JI Zhu, Liu KJR. Multi-stage Pricing Game for Collusion Resistant Dynamic Spcctrum Allocation [J]. IEEE Journal on Sclcctcd Areas in Communications, 2009, 26(1) : 182-191.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部