期刊文献+

动态边界条件下一类阻尼波动方程解的研究 被引量:1

STUDY FOR A CLASS OF DAMPED WAVE EQUATION WITH DYNAMIC BOUNDARY CONDITIONS
下载PDF
导出
摘要 本文研究了一类动态边界条件下阻尼波动方程解的问题.利用位势井理论,通过构造稳定集和不稳定集,并结合能量分析的方法,获得了如下结果.首先,当初值属于稳定集时该问题存在整体解,且E(0)<d时其能量具有指数衰减速率;其次,当u0和E(0)满足一定条件时,该问题的解在Lp范数下以指数增长;最后,给出解在有限时间爆破的充分必要条件. In this paper,we study the solution for a class of wave equation with damping terms and dynamic boundary conditions.Using the potential well method,by constructing stable and unstable sets,and combining energy method,we obtain the follows results.First,if the initial data are in the"stable set",then the global solution is got,and if E(0)d,then the energy grows exponentially.Secondly,when u0 and E(0)satisfy certain conditions,the solution grows exponentially in Lp norm.Finally,the necessary and sufficient conditions are given for the solution blow up in finite time.
出处 《数学杂志》 CSCD 北大核心 2012年第3期466-474,共9页 Journal of Mathematics
基金 国家自然科学基金(10771226) 重庆大学创新人才培养工程"211第三期工程"(s-09110)
关键词 动态边界条件 NEHARI流形 指数衰减速率 爆破 dynamic boundary conditions Nehari manifold exponential decay rate blow up
  • 相关文献

参考文献15

  • 1Goldstein G R. Derivation and physical interpretation of general boundary conditions[J]. Adv. Diff. Equ., 2006, 11(4):457-480.
  • 2Liu K, Liu Z. Exponential decay of energy of vibrating strings with local viscoelasticity[J]. Z. Angew. Math. Phys., 2002, 53(2): 265-280.
  • 3Littman W, Markus L. Stabilization of a hybrid system of elasticity by feedback boundary damp- ing[J]. Ann. Mat.Pura Appl., IV. Ser., 1988, 152: 281-330.
  • 4Zhou Yong. A blow-up result for a nonlinear wave equations with damping and vanishing initial energy in RN[j]. Adv. Appl. Math., 2005, 18: 281-286.
  • 5石兰芳.一类高阶椭圆型方程Dirichlet问题[J].数学杂志,2004,24(1):19-23. 被引量:1
  • 6Pellicer M, Morales J S. Analysis of a viscoelastic spring-mass model[J]. J. Math. Anal. Appl., 2004, 294(2): 687-698.
  • 7Pellicer M. Large time dynamics of a nonlinear spring-mass-damper model[J]. Nonlinear Anal., 2008, 69(1): 3110-3127.
  • 8Gerbi S, Houari B S. Local existence and exponential growth for a semilinear damped wave equation with dynamic boundary conditions[J]. Adv. Diff. Equ., 2008, 13(11): 1051-1074.
  • 9Gerbi S, Houari B S. Houari, Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions[J], arXiv:0811.2783vl[math. AP] 17 Nov 2008.
  • 10Adams R A. Sobolev spaces[M]. New York: Academic Press, 1975.

二级参考文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部