摘要
本文研究了完备Leibniz代数的性质及低维分类.利用Leibniz代数中平方元生成的双边理想,获得了小于五维的完备Leibniz代数完整的分类,以及五维时一类特殊情况下完备Leibniz代数的分类,从而推广了Leibniz代数的结构理论.
In this paper we study the properties of complete Leibniz algebras and their classification of low dimensions.By using the two-sided ideals which are generated by square elements,we obtain complete classification of complete Leibniz algebras of dimension less than five.We also obtain the classification of the special case of five-dimensional complete Leibniz algebras.All these results develop the construction theory of Leibniz algebras.
出处
《数学杂志》
CSCD
北大核心
2012年第3期487-498,共12页
Journal of Mathematics
基金
长江学者和创新团队发展计划(PCSIRT)
上海重点学科项目