期刊文献+

完备Leibniz代数的性质及其低维分类

PROPERTIES OF COMPLETE LEIBNIZ ALGEBRAS AND THEIR CLASSIFICATION OF LOW DIMENSIONS
下载PDF
导出
摘要 本文研究了完备Leibniz代数的性质及低维分类.利用Leibniz代数中平方元生成的双边理想,获得了小于五维的完备Leibniz代数完整的分类,以及五维时一类特殊情况下完备Leibniz代数的分类,从而推广了Leibniz代数的结构理论. In this paper we study the properties of complete Leibniz algebras and their classification of low dimensions.By using the two-sided ideals which are generated by square elements,we obtain complete classification of complete Leibniz algebras of dimension less than five.We also obtain the classification of the special case of five-dimensional complete Leibniz algebras.All these results develop the construction theory of Leibniz algebras.
作者 曾阳 林磊
出处 《数学杂志》 CSCD 北大核心 2012年第3期487-498,共12页 Journal of Mathematics
基金 长江学者和创新团队发展计划(PCSIRT) 上海重点学科项目
关键词 LEIBNIZ代数 完备李代数 完备Leibniz代数 Leibniz algebras complete Lie algebras complete Leibniz algebras
  • 相关文献

参考文献11

  • 1蒋启芬.三维Leibniz代数的分类[J].Journal of Mathematical Research and Exposition,2007,27(4):677-686. 被引量:6
  • 2佟洁,靳全勤.李代数的Poisson代数结构Ⅱ[J].数学杂志,2010,30(1):145-151. 被引量:9
  • 3Albeverio S, Ayupov Sh A, Omirov B A. On nilpotent and simple Leibniz algebras[J]. Communica- tions in Algebra, 2005, 33: 159-172.
  • 4Zhu Linsheng, Meng Daoji. The classification of complete Lie algebras with low dimensions[J]. Algebra Colloquium, 1997, 4(1): 95-109.
  • 5Albeverio S, Omirov B A, Rakhimov I S. Classification of 4-dimensional nilpotent complex Leibniz algebras[J]. Extracta Mathematicae, 2006, 21(3): 197-210.
  • 6Kurdiani R, Pirashvili T. A Leibniz algebra structure on the second tensor power[J]. Journal of Lie Theory, 2002, 12: 583-596.
  • 7Hu Naihong, Pei Yufeng, Liu Dong. A cohomological characterization of Leibniz central extensions of Lie algebras[12]. Proc. Amer. Math. Soc. 2008, 136(2): 437-447.
  • 8Bloch A. On a generalization of Lie algebra[J]. Math. IUSSR Doklady, 1965, 163(3): 471-473.
  • 9Loday J L. Une version non commutative des algebras de Lie: les algebra de Leibniz[J]. Enseign. Math. Ann., 1993, 296(1): 139-158.
  • 10Humphreys J E. Introduction to Lie algebras and representations theory[M]. Springer-Verlag, 1972.

二级参考文献16

  • 1Gerstenhaber M, Schack S D. Algebraic cohomology and deformation theory[C]. Deformation theory of algebras and structures and applications[A]. Dordrecht: Kluwer Academic Publishers, 1988, 11- 264.
  • 2Kubo Fujio. Finite-dimensional non-commutative Poisson algebras[J]. Journal of Pure and Applied Algebra, 1996, 113: 307-314.
  • 3Kubo Fujio. Non-commutative Poisson algebra structures on affine Kac-Moody algebras[J]. Journal of Pure and Applied Algebra, 1998, 126: 267-286.
  • 4Jin Quanqin, Tong Jie. Poisson algebra structures on toroidal Lie algebras[J]. Chin. Ann. Math. Ser. A, 2007, 28(1): 57-70.
  • 5Eswara R S. Irreducible representations for toroidal Lie algebras[J]. J. Pure Appl. Algebra, 2005, 202(1): 102-117.
  • 6Tong Jie, Jin Quanqin. Non-commutative Poisson algebra structures on the Lie algebras son(CQ)[J]. Algebra Colloquium, 2007, 14(3): 521-536.
  • 7BLOCH A. On a generalizatlon of Lie algebra [J]. Math in USSR Doklady, 1965, 165(3): 471-473.
  • 8LODAY J L. Cyclic Homology [M]. Springer-Verlag, Berlin, 1992.
  • 9LODAY J L. Une version non commutative des algébres de Lie: les algébres de Leibniz [J]. Enseign. Math. (2), 1993, 39(3-4): 269-293. (in French)
  • 10LODAY J L, PIRASHVILI T. Universal enveloping algebras of Leibniz algebras and (co)homology [J]. Math. Ann., 1993, 296(1): 139-158.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部