期刊文献+

关于“预拓扑与网族的预收敛类”的注 被引量:1

REMARKS ON“PRETOPOLOGIES AND PRECONVERGENCE CLASSES OF FAMILIES OF NETS”
下载PDF
导出
摘要 本文研究了预拓扑空间中的收敛问题.利用完备格同构的方法,获得了预拓扑与预收敛类可以相互确定的结果,推广了拓扑与收敛类可以相互确定的结果,同时推广了文献[1]的结果. In this paper,the problem of convergence in pretopological spaces is studied.By means of complete lattice isomorphism,it is obtained that pretopologies and preconvergence classes on any set can be determined by each other,which generalizes the fact in topological spaces and extends the main theorem in paper[1].
出处 《数学杂志》 CSCD 北大核心 2012年第3期506-510,共5页 Journal of Mathematics
基金 国家自然科学基金资助项目(11071151) 陕西师范大学研究生培养创新基金资助项目(2010CXB003) 西安工业大学校长基金资助项目(XAGDXJJ1029) 陕西省教育厅专项科研计划项目(11JK0484)
关键词 预拓扑 预收敛类 完备格同构 网族 pretopology preconvergence class complete lattice isomorphism family of nets
  • 相关文献

参考文献5

  • 1钟晓静,李生刚,苏华飞.预拓扑与网族的预收敛类[J].山东大学学报(理学版),2007,42(8):62-66. 被引量:11
  • 2Garg L R, Naimpally, S A. On some pretopologies associated with a topology[A]. Nov~k J (ed.). General topology and its relations to modern analysis and algebra-Proceedings of the third Prague topological symposium[C]. Praha: Academia Publishing House of the Czechoslovak Academy of Sciences, 1972.
  • 3Badard R. Expressions on a fuzzy pretopological substratuml[J]. Information Sciences, 1999, 116(4): 205-218.
  • 4伏文清,刘明,李生刚.预拓扑空间中的KKM型定理[J].数学杂志,2010,30(2):327-332. 被引量:3
  • 5Kelley J L. General topology[M]. New York: Van Nostrand Reinhold Co., 1955.

二级参考文献12

  • 1苏华飞,李生刚.L-预拓扑的确定[J].内蒙古大学学报(自然科学版),2006,37(4):378-381. 被引量:18
  • 2郑莲,丁协平.拓扑空间中的KKM型定理和重合点定理在平衡问题中的应用[J].工程数学学报,2006,23(6):1121-1124. 被引量:3
  • 3Bolnenblust S F. Contributions to the theory of games[M]. New Jersey: Princeton Univ. Press, 1950.
  • 4Lassonde M, Schenkel C. KKM principle, fixed points, and Nash equilibria[J]. Journal of Mathe- matical Analysis and Applications, 1992, 164(2): 542-548.
  • 5Jung Jong soo, Cho Yeol je, Kang Shin min, Chang Shih sen. Coincidence theorems for set-valued mappings and Ekeland's variational principle in fuzzy metric spaces[J]. Fuzzy Sets and Systems, 1996, 79(2): 239-250.
  • 6Huang Jianhua. The matching theorems and coincidence theorems for generalized R-KKM mapping in topological spaces[J]. Journal of Mathematical Analysis and Applications, 2005, 312(1): 374-382.
  • 7Badard R. Expressions on a fuzzy pretopological substratum[J]. Information Sciences, 1999, 116(4): 205-218.
  • 8Ding Xieping, Ding Timing. KKM type theorems and generalized vector equilibrium problems in noncompact FC-spaces[J]. J. of Math. Anal. and Appl., 2007, 331(2): 1230-1245.
  • 9Kelley J L.General topology[M].New York:Van Nostrand Reinhold Co,1955.
  • 10Badard R.Expressions on a fuzzy pretopological substratuml[J].Information Sciences,1999,116:205-218.

共引文献12

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部