期刊文献+

具有幂零临界点的Linard系统的中心-焦点判定

THE DISCRIMINATION OF CENTER AND FOCUS OF LINARD SYSTEM WITH NILPOTENT CRITICAL POINT
下载PDF
导出
摘要 本文研究了一类具有幂零临界点的Linard系统的中心-焦点判定.利用Cherkas方法,得到系统的广义Lyapunov常数,分析了系统奇点稳定性与中心条件,推广了文[6]对于初等临界点中心焦点判定的结果. The problem of discrimination between center and focus is one of the basic problems in the theory of planar autonomous differential system.In this paper,we study the discrimination of center and focus of Li'enard system with nilpotent critical point by applying Cherkas method.We obtain the generalized Lyapunov constants,and analysis the stability of singularity and get the condition of center.Therefore the results about discrimination between center and focus of the elementary critical point in[6]are improved.
出处 《数学杂志》 CSCD 北大核心 2012年第3期515-520,共6页 Journal of Mathematics
基金 国家自然科学基金资助(10971133)
关键词 中心-焦点判定 幂零临界点 Linard系统 广义Lyapunov常数 discrimination of center and focus Nilpotent critical point Lie'nard system generalized Lyapunov constants
  • 相关文献

参考文献17

  • 1Algeba A, Garcla C, Reyes M. The center problem for a family of systems of differential equations having a nilpotent singular point[J]. J. Math. Anal. Appl., 2008, 34: 32-43.
  • 2Giacomini H, Gine J, Llibre J. The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems[J]. J. Differential. Eqns., 2006, 227: 406-426.
  • 3Lyapunov A M. Stability of motion, mathematics in science and engineering[M]. Vol. 30, New York, London: Academic press, 1966.
  • 4杜乃林,陈士华.中心焦点判定的形式积分因子方法[J].数学杂志,1997,17(2):231-239. 被引量:7
  • 5蔡燧林,马晖.广义Liénard方程的奇点的中心焦点判定问题[J].浙江大学学报(自然科学版),1991,25(5):562-569. 被引量:19
  • 6杜乃林,曾宪武.A class of recursive formulas on the calculation of focus values[J].Chinese Science Bulletin,1995,40(11):881-885. 被引量:3
  • 7Gasull A, Torregrosa J. A new algorithm for the computation of the Lyapunov constants for some degenerated critical points[J]. Nonlinear Alalysis, 2001, 47: 4479-4490.
  • 8Alvarez M, Gasull A. Generating limit cycles from a nilpotent critical point via normal forms[J]. J. Math. Anal. Appl., 2006, 318: 271-287.
  • 9Liu Yirong, Li Jibin. On third-order nilpotent critical points: integral factor method[J]. Int. J. Bifur. Chaos., 2011, 21: 1-17.
  • 10Jiang Jiao, Han Maoan. Melnikov function and limit cycle bifurcation from a nilpotent center[J]. Bull. Sci. Math., 2008, 132: 182-193.

二级参考文献4

  • 1[2]S. Ruan,D.Xiao. Global analysis in a predator-Prey system with nonmonotonic functional response[J]. SIAM J. Appl. Math. 2001, 61(4):1445-1472.
  • 2蔡燧林
  • 3张芷芬,微分方程定性理论,1986年,104页
  • 4杜乃林,Chin Sci Bull,1995年,40卷,11期,881页

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部