期刊文献+

基于蚁群算法的光谱分解方法剔除植被干扰信息 被引量:2

ELIMINATING THE DISTURBANCE OF VEGETATION INFORMATION BY SPECTRAL MIXTURE ANALYSIS BASED ON ANT COLONY ALGORITHM
下载PDF
导出
摘要 针对遥感图像预处理工作中,光谱分解方法处理速度慢而蚁群算法识别目标速度快的特点,结合蚁群算法和线性光谱混合模型,建立基于蚁群搜索的光谱分解模型,以剔除植被干扰信息。选取青海黄南州吉地地区为研究区,首先确定蚂蚁移动规则,然后建立基于蚁群算法的光谱分解模型,最后根据模型重构不含有植被信息的新的多波段图像,通过残差图分析以及原图与剔除植被后影像对比分析,初步验证了基于蚁群算法的光谱分解方法剔除植被干扰信息的可行性。 In the research of extracting alteration information from remote sensing image,eliminating the disturbance of vegetation from image is important.In this paper,a spectral mixture analysis model is established based on ant colony algorithm,in order to eliminate the disturbance of vegetation.This model is applied to Jidi area in Huangnan City,Qinghai Province.Firstly,the ant-moving rule is defined.Secondly,the model of spectral mixture analysis based on ant colony algorithm is established.In the end,a new image without the disturbance of vegetation is plotted.Comparison of ETM image and result image shows that the disturbance of vegetation can be eliminated by the method.
出处 《地质力学学报》 CSCD 2012年第1期72-78,共7页 Journal of Geomechanics
关键词 蚁群算法 线性光谱混合模型 ETM 青海吉地地区 ant colony algorithm Linear Spectrum Mixture Model ETM Jidi area in Qinghai
  • 相关文献

参考文献7

  • 1Adams J B, Smith M O, ohnson P E. Peetral mixture modeling : A new analysis of rock and soil types at the Viking Lander 1 site [J]. Journal of Geophysical Research, 1986, 91 (B8) : 8098 -8112.
  • 2Smith M O, Ustin S L, Adams J B, et al. Vegetation in deserts: A regional measure of abundance from multispectral images [ J]. Remote Sensing of Environment, 1990, 31 (1) : 1 -26.
  • 3Dorigo M, Caro G D, Gambardella L M. Ant algorithms for discrete optimization [J]. Artificial Life, 1999, 5 (3) : 137 - 172.
  • 4Dorigo M, Bonabeau E, Theraulaz G. Ant algorithms and stigmergy [ J]. Future Generation Computer System, 2000, 16 (6) : 851 -871.
  • 5李士勇.蚁群优化算法及其应用研究进展[J].计算机测量与控制,2003,11(12):911-913. 被引量:54
  • 6Chialvo D R, Millonas M M. How swarms build cognitive maps [ C ] //Steels L. The biology and technology of intelligent autonomous agents. NATO ASI Series, 1995:439 -450.
  • 7王树根,杨耘,林颖,曹重华.基于人工蚁群优化算法的遥感图像自动分类[J].计算机工程与应用,2005,41(29):77-80. 被引量:9

二级参考文献29

  • 1陈永强.[D].哈尔滨:哈尔滨工业大学,2003.
  • 2ThomasMLillesand RalphWKiefcr 彭望录 余先川 周涛 译.遥感与图像解译[M].北京:电子工业出版社,2003.147-149.
  • 3Bonabeau E,Dorigo M,Theraulaz G.Swarm Intelligence[M].Oxfoxd University Press, 1999.
  • 4Dorigo M,Colorni A,Maniezzo V.The Ant System: Optimization by a colony of cooperating agents.IEEE Trans on Systems,Man,and Cybernetics- PartB, 1996 ; 26 : 1 ~ 13.
  • 5Colorni A.Distributed optimization by ant colonies[R].Proc of 1s European Conf Artificial Life.
  • 6Dorigo M,Gambardella L M.Ant colonies for the traveling salesman problem.BioSystems, 1997 ; 43 : 73 ~81.
  • 7Gambardella L M,Taillard E D,Dorigo M.Ant colonies for the quadratic assignment problem[J].Journal of the Operational Research Society, 1999;50(2) : 167~176.
  • 8Schoonderwoerd R,Holland O,Bruten J et al.Ant-Based Load Balancing in Telecommunications Networks[J].Adaptive Behavior,1997;5(2).
  • 9Ramos V,Almeida.Artificial Ant Colonies in Digital Image Habitats A Mass Behavior Effect Study on Pattern Recognition[C].In:Dorigo M eds.Proc of ANTS'2000-2nd Intel,Workshop on Ant Algorithms(From Ant Colonies to Artificial Ants),2000:113~116.
  • 10Ouadfel S,Batouche M,Garbay C.Ant Colony System for Image Segmentation Using Markov Random Field[C]Jn:Proc of the 3nd Intel Workshop on Ant Algorithms 2002:294-295.

共引文献60

同被引文献32

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部