期刊文献+

广义向量锥拟凸拟平衡系统的存在性定理(英文) 被引量:1

Existence Theorems of Solutions for the System of Generalized Vector Cone-Properly Quasi-Convex Quasi-Equilibrium Problems
下载PDF
导出
摘要 在实局部凸Hausdorff拓扑空间中证明了广义向量锥拟凸拟平衡系统的存在性定理.作为它的应用,得到了多目标广义系统问题弱Pareto-Nash均衡点的存在性结果. The system of generalized vector cone-properly quasi-convex quasi-equilibrium problems is considered.As its applications.The existence results are derived for weakly Pareto-Nash equilibrium points for multiobjective generalized game problems and multiobjective game problems in real locally convex Hausdorff topological spaces.
出处 《吉首大学学报(自然科学版)》 CAS 2012年第1期12-17,共6页 Journal of Jishou University(Natural Sciences Edition)
基金 Supported by the National Natural Science Foundation of China(11061023) Natural Science Foundation of Jiangxi Province(2010GZS0176) Doctor Startup Project(EA200907383)
关键词 广义向量锥拟凸拟平衡系统 存在性定理 弱Pareto-Nash均衡点 system of generalized vector cone-properly quasi-convex quasi-equilibrium problems weakly Pareto-Nash equilibrium point
  • 相关文献

参考文献14

  • 1FU Jun-yi. Symmetric Vector Quasi-Equilibrium Problems [J]. J. Math. Appl. ,2003,285 :708 - 713.
  • 2LIN Zhi,YU Jian. The Existence of Solutions for the System of Generalized Vector Quasi-Equilibrium Problems[J ].Applied Mathematics Letters, 2005,18 : 415 - 422.
  • 3BLUM E,OETTL1 W. From Optimization and Variational Inequalities to Equilibrium Problems [J]. Math. Student, 1994,63:123 - 145.
  • 4FAN K. A Minimax Inequality and Applications [ M] / / SHISH A O. Inequalities III. New York: Academic Press, 19 7 2 :103 - 113.
  • 5GLICKSBERG I. A Further Generalization of the Kakutani Fixed Point Theorem with Application to Nash Equilibrium Points [J].Proc. Amer. Math. Soc. ,1952,31:70-174.
  • 6NOOR M A,OETTLI W. On General Nonlinear Complementarity Problems and Quasi-Equilibria [M]. Le Mate ma- tiche XLIX, 1994 : 313 - 331.
  • 7TAN N X. Quasi-Variational Inequalities in Topological Linear Locally Convex Hausdorff Spaces [J]. Math. Nachr. , 1985,12:2 231-2 245.
  • 8FERRO F. A Minimax Theorem for Vector-Valued Functions [J]. J. Optim. Theory Appl. , 1989,60: 19 - 31.
  • 9JAHN J. Mathematical Vector Optimization in Partially Order Linear Spaces [J]. Peter Lang,FranMurt, 1986.
  • 10ANSARI Q H,SCHAIBLE S,YAO J C. The System of Generalized Vector Equilibrium Problems with Appllications [J]. J. Global Optim. ,2002,22:3 - 16.

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部