期刊文献+

几乎周期点稠密系统的拓扑遍历性

Topological Ergodicity of Almost Periodic Points Dense
下载PDF
导出
摘要 在极小映射的基础上构造了几乎周期点稠密系统,并运用拓扑传递性与稠密性研究了几乎周期点稠密系统与Li-Yorke混沌的关系,证明了几乎周期点稠密系统在一定条件下是拓扑遍历的.这样,建立起了几乎周期点稠密系统与拓扑遍历性的联系,对进一步了解几乎周期点稠密系统测度中心的性质有一定的启示作用. The authors constructed the almost periodic point dense system based on minimal mapping,studied the relation between the almost periodic point dense system and Li-Yorke chaos by using topological transitivity and density,and proved the topological ergodicity of the almost periodic points dense system under certain conditions.The study established the relation between the almost periodic point dense system and topological ergodicity,and had some enlightenments on the further studying of the characteristics of the measure centre of the almost periodic points dense system.
出处 《吉首大学学报(自然科学版)》 CAS 2012年第1期21-22,共2页 Journal of Jishou University(Natural Sciences Edition)
关键词 几乎周期点 传递 拓扑遍历性 almost periodic points transitive topological ergodicity
  • 相关文献

参考文献5

二级参考文献12

  • 1王一伊.集值离散动力系统的混沌性与拓扑混合[J].吉林大学学报(理学版),2005,43(4):436-438. 被引量:2
  • 2廖公夫,王立冬,张玉成.一类集值映射的传递性、混合性与混沌[J].中国科学(A辑),2005,35(10):1155-1161. 被引量:13
  • 3Martine Q.. Substitution dynamical systems-spectral analysis [ M ]. Berlin Heideberg. Lecture Notes in Math, Springer-Verlag, 1987 : 1294.
  • 4Liao, G. F. Wang, L. Y.. Almost periodicity, chain recurrence and chaos [ J ]. Israel J. Math. , 1996 (93) : 145 - 156.
  • 5Li, T. Y. Yorke J.. Period three implies chaos Amer[ J ]. Math. Monthly, 1975 (82) :985 - 992.
  • 6Roman-Flores H, Chalco-Cano Y. Robinson's Chaos in Set-valued Discrete Systems [ J]. Chaos, Solitons and Fractals, 2005, 25(1) : 33-42.
  • 7Kwietniak D, Oprocha P. Topological Entropy and Chaos for Maps Induced on Hyperspaces [ J/OL]. Chaos, Solitons and Fractals. [ 2007-01-01 ]. http ://home. agh. edu. pl/- oprocha/papers/hyper. pdf.
  • 8Klein E, Thompson A. Theory of Correspondences [ M ]. New York: Wiley-Inter Science, 1984: 8.
  • 9Fedeli A. On Chaotic Set-valued Discrete Dynamical Systems [J]. Chaos, Solitons and Fractals, 2005, 23(4): 1381-1384.
  • 10廖公夫,范钦杰.拓扑熵为零且Schweizer-Smítal混沌的极小子转移[J].中国科学(A辑),1997,27(9):769-774. 被引量:21

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部