期刊文献+

AN INFORMATION FUSION METHOD FOR SENSOR DATA RECTIFICATION

AN INFORMATION FUSION METHOD FOR SENSOR DATA RECTIFICATION
下载PDF
导出
摘要 In the applications of water regime monitoring, incompleteness, and inaccuracy of sensor data may directly affect the reliability of acquired monitoring information. Based on the spatial and temporal correlation of water regime monitoring information, this paper addresses this issue and proposes an information fusion method to implement data rectification. An improved Back Propagation (BP) neural network is used to perform data fusion on the hardware platform of a stantion unit, which takes Field-Programmable Gate Array (FPGA) as the core component. In order to verify the effectiveness, five measurements including water level, discharge and velocity are selected from three different points in a water regime monitoring station. The simulation results show that this method can recitify random errors as well as gross errors significantly. In the applications of water regime monitoring, incompleteness, and inaccuracy of sensor data may directly affect the reliability of acquired monitoring information. Based on the spatial and temporal correlation of water regime monitoring information, this paper addresses this issue and proposes an information fusion method to implement data rectification. An improved Back Propa- gation (BP) neural network is used to perform data fusion on the hardware platform of a stantion unit, which takes Field-Programmable Gate Array (FPGA) as the core component. In order to verify the effectiveness, five measurements including water level, discharge and velocity are selected from three different points in a water regime monitoring station. The simulation results show that this method can recitify random errors as well as gross errors significantly.
出处 《Journal of Electronics(China)》 2012年第1期148-157,共10页 电子科学学刊(英文版)
基金 Supported by the National Natural Science Foundation of China (No. 60774092, No. 60901003) the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20070294027)
关键词 Information fusion Sensor data rectification Back Propagation (BP) neural network Field-Programmable Gate Array (FPGA) Information fusion Sensor data rectification Back Propagation (BP) neural network Field-Programmable Gate Array (FPGA)
  • 相关文献

参考文献17

  • 1P.Bernardara,E.Rocquigny,N.Goutal. Uncertainty analysis in flood hazard assessment:hydrological and hydraulic calibration[J].Canadian Journal of Civil Engineering,2010,(07):968-979.
  • 2Xi Chen,Yong-Qin,David Chen,Zhi-Cai Zhang. A numerical modeling system of the hydrological cycle for estimation of water fluxes in the Huaihe River plain region[J].Journal of Hydrometeorology,2007,(04):702-714.
  • 3J.R.Koch,T.V.Freiberger. Autonomous realtime monitoring of hydrological environments[A].Chicago,USA,2006.376-377.
  • 4林志贵,徐立中,沈祖诒,黄凤辰.信息融合在水环境监测中的应用[J].水利水文自动化,2003(2):1-7. 被引量:13
  • 5P.J.Escamilla-Ambrosio,N.Mort. A hybrid Kalman filter-fuzzy logic architecture for mutisensor data fusion[A].Mexico City,Mexico,2001.364-369.
  • 6许丽佳.DS理论在信息融合中的改进[J].系统工程与电子技术,2004,26(6):717-720. 被引量:24
  • 7J.A.Stover,D.L.Hall,R.E.Gibson. A fuzzy-logic architecture for autonomous multisensor data fusion[J].IEEE Transactions on Industrial Electronics,1996,(03):403-410.
  • 8D.Mohamed,M.Zasadzinski. Data reconciliation in generalized linear dynamic systems[J].American Institute of Chemical Engineering Journal,1991,(02):193-201.
  • 9A.Rakar,D.Juricic. Diagnostic reasoning under conflicting data:The application of the transferable belief model[J].Journal of Process Control,2002,(01):55-67.
  • 10T.A.Patriciua,D.M.Himmelblau. Data rectification and gross error detection in a steady-state process via artificial neural networks[J].Industrial and Engineering Chemistry Research,1993,(12):3020-3028.

二级参考文献20

  • 1[5]Steven M.Kloiber,Patrick L.Brezonik,Marvin E.Bauer.Application of Landsat Imagery to Regional-scale Assessments of Lake Clarity.Water Research,2002,36:4330~4340
  • 2[7]U.S.Department of Defense,Data Fusion Subpanel of the Joint Directors of Laboratories,Technical Panel for C3,Data fusion lexicon,1991
  • 3[11]Luo R.C.,Lin M.H..Hierarchial Robot Multi-sensor Data Fusion System.NATO ASI Seres,Vol.F58:Highly Redundant Sensing in Robotic Systems,Springer-Verlag Berlin Heidelberg,1990:67 ~ 86
  • 4[14]Roggemann,M.C.et al.Multisensor Information Fusion for Target Detection and Classificariort.in Proc.SPIE,Sensor Fusion,1988,931:8~13
  • 5[15]Kriegman,D.J.et al.A Mobile Robot:Sensing,Planning and Locomotion.Proc.IEEE Conf.Robotics and Automation,1987,402 ~408
  • 6[16]Durrant -Whyte,et al.Toward a Fully Decentralized Architecture for Multi-Sensor Data Fusion.Proc.of IEEE Int.Conf.on Robotics and Automations,1990,1331 ~ 1336
  • 7[17]Durrant-Whyte.Sensor Models and Muhisensor Integration.Int.Journ.of Robotics Research,1988,7:97~113
  • 8[18]Mekendall,R.and Mintz,M..Robust Fusion of Location Information.Proc.of IEEE Int.Conf.on Robotics and Automations,1988,1239~ 1244
  • 9[19]Zeytinoglu,M.and Mintz,M..Robust Fixed Size Confidence Procedures for a Restricted Parameter Space.Annual Statistics,1988,16:1241 ~ 1253
  • 10[20]Waltz,E.L.and Llinas,J..Sensor Fusion.Norwood,MA:Artec House,1991

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部